32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An interference effect of observed biological movement on action.

      Current Biology

      Adult, Arm, physiology, Cues, Feedback, Female, Humans, Imitative Behavior, Male, Models, Biological, Motor Skills, Movement, Nerve Net, Photic Stimulation, Psychomotor Performance, Reaction Time, Robotics, Spatial Behavior, Volition

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been proposed that actions are intrinsically linked to perception and that imagining, observing, preparing, or in any way representing an action excites the motor programs used to execute that same action. There is neurophysiological evidence that certain brain regions involved in executing actions are activated by the mere observation of action (the so-called "mirror system;" ). However, it is unknown whether this mirror system causes interference between observed and simultaneously executed movements. In this study we test the hypothesis that, because of the overlap between action observation and execution, observed actions should interfere with incongruous executed actions. Subjects made arm movements while observing either a robot or another human making the same or qualitatively different arm movements. Variance in the executed movement was measured as an index of interference to the movement. The results demonstrate that observing another human making incongruent movements has a significant interference effect on executed movements. However, we found no evidence that this interference effect occurred when subjects observed a robotic arm making incongruent movements. These results suggest that the simultaneous activation of the overlapping neural networks that process movement observation and execution infers a measurable cost to motor control.

          Related collections

          Most cited references 8

          • Record: found
          • Abstract: found
          • Article: not found

          Mirror neurons and the simulation theory of mind-reading.

           V Gallese (1998)
          A new class of visuomotor neuron has been recently discovered in the monkey's premotor cortex: mirror neurons. These neurons respond both when a particular action is performed by the recorded monkey and when the same action, performed by another individual, is observed. Mirror neurons appear to form a cortical system matching observation and execution of goal-related motor actions. Experimental evidence suggests that a similar matching system also exists in humans. What might be the functional role of this matching system? One possible function is to enable an organism to detect certain mental states of observed conspecifics. This function might be part of, or a precursor to, a more general mind-reading ability. Two different accounts of mind-reading have been suggested. According to `theory theory', mental states are represented as inferred posits of a naive theory. According to `simulation theory', other people's mental states are represented by adopting their perspective: by tracking or matching their states with resonant states of one's own. The activity of mirror neurons, and the fact that observers undergo motor facilitation in the same muscular groups as those utilized by target agents, are findings that accord well with simulation theory but would not be predicted by theory theory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interacting minds--a biological basis.

             U Frith,  Martin Frith (1999)
            The ability to "mentalize," that is to understand and manipulate other people's behavior in terms of their mental states, is a major ingredient in successful social interactions. A rudimentary form of this ability may be seen in great apes, but in humans it is developed to a high level. Specific impairments of mentalizing in both developmental and acquired disorders suggest that this ability depends on a dedicated and circumscribed brain system. Functional imaging studies implicate medial prefrontal cortex and posterior superior temporal sulcus (STS) as components of this system. Clues to the specific function of these components in mentalizing come from single cell recording studies: STS is concerned with representing the actions of others through the detection of biological motion; medial prefrontal regions are concerned with explicit representation of states of the self. These observations suggest that the ability to mentalize has evolved from a system for representing actions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of human primary motor cortex during action observation: a neuromagnetic study.

              The monkey premotor cortex contains neurons that discharge during action execution and during observation of actions made by others. Transcranial magnetic stimulation experiments suggest that a similar observation/execution matching system also is present in humans. We recorded neuromagnetic oscillatory activity of the human precentral cortex from 10 healthy volunteers while (i) they had no task to perform, (ii) they were manipulating a small object, and (iii) they were observing another individual performing the same task. The left and right median nerves were stimulated alternately (interstimulus interval, 1.5 s) at intensities exceeding motor threshold, and the poststimulus rebound of the rolandic 15- to 25-Hz activity was quantified. In agreement with previous studies, the rebound was strongly suppressed bilaterally during object manipulation. Most interestingly, the rebound also was significantly diminished during action observation (31-46% of the suppression during object manipulation). Control experiments, in which subjects were instructed to observe stationary or moving stimuli, confirmed the specificity of the suppression effect. Because the recorded 15- to 25-Hz activity is known to originate mainly in the precentral motor cortex, we concluded that the human primary motor cortex is activated during observation as well as execution of motor tasks. These findings have implications for a better understanding of the machinery underlying action recognition in humans.
                Bookmark

                Author and article information

                Journal
                12646137

                Comments

                Comment on this article