19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Integration of Speech and Action in Humanoid Robots: iCub Simulation Experiments

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Socially intelligent robots: dimensions of human-robot interaction.

          Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Symbol Grounding Problem

            How can the semantic interpretation of a formal symbol system be made intrinsic to the system, rather than just parasitic on the meanings in our heads? How can the meanings of the meaningless symbol tokens, manipulated solely on the basis of their (arbitrary) shapes, be grounded in anything but other meaningless symbols? The problem is analogous to trying to learn Chinese from a Chinese/Chinese dictionary alone. A candidate solution is sketched: Symbolic representations must be grounded bottom-up in nonsymbolic representations of two kinds: (1) "iconic representations," which are analogs of the proximal sensory projections of distal objects and events, and (2) "categorical representations," which are learned and innate feature-detectors that pick out the invariant features of object and event categories from their sensory projections. Elementary symbols are the names of these object and event categories, assigned on the basis of their (nonsymbolic) categorical representations. Higher-order (3) "symbolic representations," grounded in these elementary symbols, consist of symbol strings describing category membership relations (e.g., "An X is a Y that is Z").
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Explaining Facial Imitation: A Theoretical Model.

              A long-standing puzzle in developmental psychology is how infants imitate gestures they cannot see themselves perform (facial gestures). Two critical issues are: (a) the metric infants use to detect cross-modal equivalences in human acts and (b) the process by which they correct their imitative errors. We address these issues in a detailed model of the mechanisms underlying facial imitation. The model can be extended to encompass other types of imitation. The model capitalizes on three new theoretical concepts. First, organ identification is the means by which infants relate parts of their own bodies to corresponding ones of the adult's. Second, body babbling (infants' movement practice gained through self-generated activity) provides experience mapping movements to the resulting body configurations. Third, organ relations provide the metric by which infant and adult acts are perceived in commensurate terms. In imitating, infants attempt to match the organ relations they see exhibited by the adults with those they feel themselves make. We show how development restructures the meaning and function of early imitation. We argue that important aspects of later social cognition are rooted in the initial cross-modal equivalence between self and other found in newborns.
                Bookmark

                Author and article information

                Journal
                IEEE Transactions on Autonomous Mental Development
                IEEE Trans. Auton. Mental Dev.
                Institute of Electrical and Electronics Engineers (IEEE)
                1943-0604
                1943-0612
                March 2011
                March 2011
                : 3
                : 1
                : 17-29
                Article
                10.1109/TAMD.2010.2100390
                8f84ed7b-f697-49f5-9801-4b16acdab254
                © 2011
                History

                Comments

                Comment on this article