5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plausible microbial metabolisms on Mars

      , ,
      Astronomy & Geophysics
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data.

          Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the "phyllocian" era) are found in the oldest terrains; sulfates were formed in a second era (the "theiikian" era) in an acidic environment. Beginning about 3.5 billion years ago, the last era (the "siderikian") is dominated by the formation of anhydrous ferric oxides in a slow superficial weathering, without liquid water playing a major role across the planet.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detection of methane in the atmosphere of Mars.

            We report a detection of methane in the martian atmosphere by the Planetary Fourier Spectrometer onboard the Mars Express spacecraft. The global average methane mixing ratio is found to be 10 +/- 5 parts per billion by volume (ppbv). However, the mixing ratio varies between 0 and 30 ppbv over the planet. The source of methane could be either biogenic or nonbiogenic, including past or present subsurface microorganisms, hydrothermal activity, or cometary impacts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organic compounds in carbonaceous meteorites.

              The carbonaceous chondrite meteorites are fragments of asteroids that have remained relatively unprocessed since the formation of the solar system 4.6 billion years ago. These carbon-rich objects contain a variety of extraterrestrial organic molecules that constitute a record of chemical evolution prior to the origin of life. Compound classes include aliphatic hydrocarbons, aromatic hydrocarbons, amino acids, carboxylic acids, sulfonic acids, phosphonic acids, alcohols, aldehydes, ketones, sugars, amines, amides, nitrogen heterocycles, sulfur heterocycles and a relatively abundant high molecular weight macromolecular material. Structural and stable isotopic characteristics suggest that a number of environments may have contributed to the organic inventory, including interstellar space, the solar nebula and the asteroidal meteorite parent body. This review covers work published between 1950 and the present day and cites 193 references.
                Bookmark

                Author and article information

                Journal
                Astronomy & Geophysics
                Astronomy & Geophysics
                Oxford University Press (OUP)
                1366-8781
                1468-4004
                January 15 2013
                January 15 2013
                : 54
                : 1
                : 1.13-1.16
                Article
                10.1093/astrogeo/ats034
                8f85854c-03d6-42ab-8749-32125896d7ea
                © 2013
                History

                Comments

                Comment on this article