28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroprotective effects of DAHP and Triptolide in focal cerebral ischemia via apoptosis inhibition and PI3K/Akt/mTOR pathway activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Triptolide (TP), one of the major active components of the traditional Chinese herb Tripterygium wilfordii Hook F, and 2, 4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of tetrahydrobiopterin (BH4) synthesis, have been reported to have potent anti-inflammatory and immunosuppressive properties. However, the protective effects of TP and DAHP on cerebral ischemia have not been reported yet. In this study, we investigated the neuroprotective effects of TP and DAHP in a middle cerebral artery occlusion (MCAO) rat model. Furthermore, we examined whether the neuroprotective effects of TP and DAHP were associated with the inhibition of apoptosis through suppressing BH4 and inducible NOS (iNOS) synthesis or the activation of the phosphoinositide-3-kinase/serine-threonine kinase Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. Our results showed that pretreatments with TP (0.2 mg/kg) and DAHP (0.5 g/kg) significantly reduced ischemic lesion volume, water content, and neuronal cell death compared with the vehicle MCAO rats. In addition, compared with the MCAO group, TP, and DAHP pretreatment groups significantly reduced astrocyte numbers, caspase-3, cleaved caspase-3, and NF-κB up-regulation, while increased Bcl-2 expression. Moreover, protein expressions of PI3K, Akt, and mTOR increased, while extracellular signal-regulated protein kinases 1 and 2 (ERK1 and ERK2) phosphorylation decreased in both the TP-treated rats and DAHP-treated rats. These results demonstrate that TP and DAHP can decrease cell apoptosis in focal cerebral ischemia rat brains and that the mechanism may be related to the activation of the PI3K/Akt/mTOR pathway and inactivation of the ERK1/2 pathway. Thus our hypothesis was reached PI3K/Akt/mTOR and ERK1/2 pathways may provide distinct cellular targets for a new generation of therapeutic agents for the treatment of stroke, and TP and DAHP may be potential neuroprotective agents for cerebral ischemia/reperfusion injury.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Occurence and clinical predictors of spasticity after ischemic stroke.

          There is currently no consensus on (1) the percentage of patients who develop spasticity after ischemic stroke, (2) the relation between spasticity and initial clinical findings after acute stroke, and (3) the impact of spasticity on activities of daily living and health-related quality of life. In a prospective cohort study, 301 consecutive patients with clinical signs of central paresis due to a first-ever ischemic stroke were examined in the acute stage and 6 months later. At both times, the degree and pattern of paresis and muscle tone, the Barthel Index, and the EQ-5D score, a standardized instrument of health-related quality of life, were evaluated. Spasticity was assessed on the Modified Ashworth Scale and defined as Modified Ashworth Scale >1 in any of the examined joints. Two hundred eleven patients (70.1%) were reassessed after 6 months. Of these, 42.6% (n=90) had developed spasticity. A more severe degree of spasticity (Modified Ashworth Scale >or=3) was observed in 15.6% of all patients. The prevalence of spasticity did not differ between upper and lower limbs, but in the upper limb muscles, higher degrees of spasticity (Modified Ashworth Scale >or=3) were more frequently (18.9%) observed than in the lower limbs (5.5%). Regression analysis used to test the differences between upper and lower limbs showed that patients with more severe paresis in the proximal and distal limb muscles had a higher risk for developing spasticity (P
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A death-promoting role for extracellular signal-regulated kinase.

            Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), which are members of the mitogen-activated protein kinase superfamily, have been well characterized and are known to be involved in cell survival; however, recent evidence suggests that the activation of ERK1/2 also contributes to cell death in some cell types and organs under certain conditions. For example, ERK1/2 is activated in neuronal and renal epithelial cells upon exposure to oxidative stress and toxicants and deprivation of growth factors, and inhibition of the ERK pathway blocks apoptosis. ERK activation also occurs in animal models of ischemia- and trauma-induced brain injury and cisplatin-induced renal injury, and inactivation of ERK reduces the extent of tissue damage. In some studies, ERK has been implicated in apoptotic events upstream of mitochondrial cytochrome c release, whereas other studies have suggested the converse that ERK acts downstream of mitochondrial events and upstream of caspase-3 activation. ERK also can contribute to cell death through the suppression of the antiapoptotic signaling molecule Akt. Here we summarize the evidence and mechanism of ERK-induced apoptosis in both cell culture and in animal models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain.

              Free radical-mediated oxidative damage has been implicated in tissue injury resulting from ischemia/reperfusion events. Global cortical ischemia/reperfusion injury to Mongolian gerbil brains was produced by transient occlusion of both common carotid arteries. Protein oxidation, as measured by protein carbonyl content, increased significantly during the reperfusion phase that followed 10 min of ischemia. The activity of glutamine synthetase, an enzyme known to be inactivated by metal-catalyzed oxidation reactions, decreased to 65% of control levels after 2 hr of reperfusion that followed 10 min of ischemia. We also report that the free radical spin trap N-tert-butyl-alpha-phenylnitrone [300 mg/kg (body weight)] administered 60 min before ischemia/reperfusion is initiated, partially prevents protein oxidation and protects from loss of glutamine synthetase activity. In addition, we report a N-tert-butyl-alpha-phenylnitrone-dependent nitroxide radical obtained in the lipid fraction of the ischemia/reperfusion-lesioned brains, but there was very little radical present in the comparable sham-operated control brains. These data strengthen the previous observation utilizing in vivo-trapping methods, that free radical flux is increased during the reperfusion phase of the ischemia-lesioned gerbil brain. The loss of glutamine synthetase would be expected to increase the levels of brain L-glutamate. Thus, the oxidative inactivation of glutamine synthetase may be a critical factor in the neurotoxicity produced after cerebral ischemia/reperfusion injury.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neuroanat
                Front Neuroanat
                Front. Neuroanat.
                Frontiers in Neuroanatomy
                Frontiers Media S.A.
                1662-5129
                22 April 2015
                2015
                : 9
                : 48
                Affiliations
                [1] 1Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou China
                [2] 2Department of Obstetrics and Gynecology, Hangzhou Red Cross Hospital, Hangzhou China
                Author notes

                Edited by: Yun-Qing Li, The Fourth Military Medical University, China

                Reviewed by: Chunmei Wang, The Chinese University of Hong Kong, China; Zhenhua Xu, Medical University of South Carolina, USA; Linhao Xu, The Chinese University of Hong Kong, Hong Kong

                *Correspondence: Marong Fang, Institute of Neuroscience, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China fangmaro@zju.edu.cn
                Article
                10.3389/fnana.2015.00048
                4406066
                25954164
                8f8a7445-2d76-40b4-bfd2-011c9808cde6
                Copyright © 2015 Li, Yang, Hu, Ling and Fang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 February 2015
                : 02 April 2015
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 44, Pages: 12, Words: 0
                Categories
                Neuroanatomy
                Original Research

                Neurosciences
                cerebral ischemia,dahp,triptolide,pi3k/akt/mtor,anti-apoptosis,neuroprotection
                Neurosciences
                cerebral ischemia, dahp, triptolide, pi3k/akt/mtor, anti-apoptosis, neuroprotection

                Comments

                Comment on this article

                scite_

                Similar content317

                Cited by27

                Most referenced authors835