28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Centromere Protein (CENP)-W Interacts with Heterogeneous Nuclear Ribonucleoprotein (hnRNP) U and May Contribute to Kinetochore-Microtubule Attachment in Mitotic Cells

      research-article
      , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recent studies have shown that heterogeneous nuclear ribonucleoprotein U (hnRNP U), a component of the hnRNP complex, contributes to stabilize the kinetochore-microtubule interaction during mitosis. CENP-W was identified as an inner centromere component that plays crucial roles in the formation of a functional kinetochore complex.

          Results

          We report that hnRNP U interacts with CENP-W, and the interaction between hnRNP U and CENP-W mutually increased each other’s protein stability by inhibiting the proteasome-mediated degradation. Further, their co-localization was observed chiefly in the nuclear matrix region and at the microtubule-kinetochore interface during interphase and mitosis, respectively. Both microtubule-stabilizing and microtubule-destabilizing agents significantly decreased the protein stability of CENP-W. Furthermore, loss of microtubules and defects in microtubule organization were observed in CENP-W-depleted cells.

          Conclusion

          Our data imply that CENP-W plays an important role in the attachment and interaction between microtubules and kinetochore during mitosis.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          The spindle-assembly checkpoint in space and time.

          In eukaryotes, the spindle-assembly checkpoint (SAC) is a ubiquitous safety device that ensures the fidelity of chromosome segregation in mitosis. The SAC prevents chromosome mis-segregation and aneuploidy, and its dysfunction is implicated in tumorigenesis. Recent molecular analyses have begun to shed light on the complex interaction of the checkpoint proteins with kinetochores--structures that mediate the binding of spindle microtubules to chromosomes in mitosis. These studies are finally starting to reveal the mechanisms of checkpoint activation and silencing during mitotic progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore.

            Kinetochore specification and assembly requires the targeted deposition of specialized nucleosomes containing the histone H3 variant CENP-A at centromeres. However, CENP-A is not sufficient to drive full-kinetochore assembly, and it is not clear how centromeric chromatin is established. Here, we identify CENP-W as a component of the DNA-proximal constitutive centromere-associated network (CCAN) of proteins. We demonstrate that CENP-W forms a DNA-binding complex together with the CCAN component CENP-T. This complex directly associates with nucleosomal DNA and with canonical histone H3, but not with CENP-A, in centromeric regions. CENP-T/CENP-W functions upstream of other CCAN components with the exception of CENP-C, an additional putative DNA-binding protein. Our analysis indicates that CENP-T/CENP-W and CENP-C provide distinct pathways to connect the centromere with outer kinetochore assembly. In total, our results suggest that the CENP-T/CENP-W complex is directly involved in establishment of centromere chromatin structure coordinately with CENP-A.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome.

              SCF ubiquitin ligases control various processes by marking regulatory proteins for ubiquitin-dependent proteolysis. To illuminate how SCF complexes are regulated, we sought proteins that interact with the human SCF component CUL1. The COP9 signalosome (CSN), a suppressor of plant photomorphogenesis, associated with multiple cullins and promoted cleavage of the ubiquitin-like protein NEDD8 from Schizosaccharomyces pombe CUL1 in vivo and in vitro. Multiple NEDD8-modified proteins uniquely accumulated in CSN-deficient S. pombe cells. We propose that the broad spectrum of activities previously attributed to CSN subunits--including repression of photomorphogenesis, activation of JUN, and activation of p27 nuclear export--underscores the importance of dynamic cycles of NEDD8 attachment and removal in biological regulation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                16 February 2016
                2016
                : 11
                : 2
                : e0149127
                Affiliations
                [001]Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
                Northwestern Medical Faculty Foundation, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SL. Performed the experiments: YC RK. Analyzed the data: YC RK SL. Contributed reagents/materials/analysis tools: YC RK. Wrote the paper: SL YC.

                Article
                PONE-D-15-46638
                10.1371/journal.pone.0149127
                4755543
                26881882
                8f8f35ab-b3e0-4ad3-9c24-d1b3857dfb5e
                © 2016 Chun et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 October 2015
                : 27 January 2016
                Page count
                Figures: 6, Tables: 0, Pages: 16
                Funding
                This research was supported by the Basic Science Research Program by the Ministry of Education, Science and Technology of Korea (2013R1A1A3A04005274) and the research fund of Chungnam National University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cytoskeleton
                Microtubules
                Research and Analysis Methods
                Precipitation Techniques
                Immunoprecipitation
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                Small interfering RNAs
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Small interfering RNAs
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Cell Cycle and Cell Division
                Mitosis
                Biology and Life Sciences
                Cell Biology
                Chromosome Biology
                Mitosis
                Research and analysis methods
                Biological cultures
                Cell lines
                293T cells
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cell Nucleus
                Nuclear Matrix
                Biology and Life Sciences
                Biochemistry
                Proteins
                Protein Interactions
                Biology and life sciences
                Biochemistry
                Proteins
                DNA-binding proteins
                Nucleases
                Ribonucleases
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzymes
                Hydrolases
                Nucleases
                Ribonucleases
                Biology and Life Sciences
                Biochemistry
                Proteins
                Enzymes
                Hydrolases
                Nucleases
                Ribonucleases
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article