11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modeling and detection of respiratory-related outbreak signatures

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Time series methods are commonly used to detect disease outbreak signatures (e.g., signals due to influenza outbreaks and anthrax attacks) from varying respiratory-related diagnostic or syndromic data sources. Typically this involves two components: (i) Using time series methods to model the baseline background distribution (the time series process that is assumed to contain no outbreak signatures), (ii) Detecting outbreak signatures using filter-based time series methods.

          Methods

          We consider time series models for chest radiograph data obtained from Midwest children's emergency departments. These models incorporate available covariate information such as patient visit counts and smoothed ambient temperature series, as well as time series dependencies on daily and weekly seasonal scales. Respiratory-related outbreak signature detection is based on filtering the one-step-ahead prediction errors obtained from the time series models for the respiratory-complaint background.

          Results

          Using simulation experiments based on a stochastic model for an anthrax attack, we illustrate the effect of the choice of filter and the statistical models upon radiograph-attributed outbreak signature detection.

          Conclusion

          We demonstrate the importance of using seasonal autoregressive integrated average time series models (SARIMA) with covariates in the modeling of respiratory-related time series data. We find some homogeneity in the time series models for the respiratory-complaint backgrounds across the Midwest emergency departments studied. Our simulations show that the balance between specificity, sensitivity, and timeliness to detect an outbreak signature differs by the emergency department and the choice of filter. The linear and exponential filters provide a good balance.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Implementing syndromic surveillance: a practical guide informed by the early experience.

          Syndromic surveillance refers to methods relying on detection of individual and population health indicators that are discernible before confirmed diagnoses are made. In particular, prior to the laboratory confirmation of an infectious disease, ill persons may exhibit behavioral patterns, symptoms, signs, or laboratory findings that can be tracked through a variety of data sources. Syndromic surveillance systems are being developed locally, regionally, and nationally. The efforts have been largely directed at facilitating the early detection of a covert bioterrorist attack, but the technology may also be useful for general public health, clinical medicine, quality improvement, patient safety, and research. This report, authored by developers and methodologists involved in the design and deployment of the first wave of syndromic surveillance systems, is intended to serve as a guide for informaticians, public health managers, and practitioners who are currently planning deployment of such systems in their regions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Time series modeling for syndromic surveillance

            Background Emergency department (ED) based syndromic surveillance systems identify abnormally high visit rates that may be an early signal of a bioterrorist attack. For example, an anthrax outbreak might first be detectable as an unusual increase in the number of patients reporting to the ED with respiratory symptoms. Reliably identifying these abnormal visit patterns requires a good understanding of the normal patterns of healthcare usage. Unfortunately, systematic methods for determining the expected number of (ED) visits on a particular day have not yet been well established. We present here a generalized methodology for developing models of expected ED visit rates. Methods Using time-series methods, we developed robust models of ED utilization for the purpose of defining expected visit rates. The models were based on nearly a decade of historical data at a major metropolitan academic, tertiary care pediatric emergency department. The historical data were fit using trimmed-mean seasonal models, and additional models were fit with autoregressive integrated moving average (ARIMA) residuals to account for recent trends in the data. The detection capabilities of the model were tested with simulated outbreaks. Results Models were built both for overall visits and for respiratory-related visits, classified according to the chief complaint recorded at the beginning of each visit. The mean absolute percentage error of the ARIMA models was 9.37% for overall visits and 27.54% for respiratory visits. A simple detection system based on the ARIMA model of overall visits was able to detect 7-day-long simulated outbreaks of 30 visits per day with 100% sensitivity and 97% specificity. Sensitivity decreased with outbreak size, dropping to 94% for outbreaks of 20 visits per day, and 57% for 10 visits per day, all while maintaining a 97% benchmark specificity. Conclusions Time series methods applied to historical ED utilization data are an important tool for syndromic surveillance. Accurate forecasting of emergency department total utilization as well as the rates of particular syndromes is possible. The multiple models in the system account for both long-term and recent trends, and an integrated alarms strategy combining these two perspectives may provide a more complete picture to public health authorities. The systematic methodology described here can be generalized to other healthcare settings to develop automated surveillance systems capable of detecting anomalies in disease patterns and healthcare utilization.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Point process methodology for on-line spatio-temporal disease surveillance

                Bookmark

                Author and article information

                Journal
                BMC Med Inform Decis Mak
                BMC Medical Informatics and Decision Making
                BioMed Central
                1472-6947
                2007
                5 October 2007
                : 7
                : 28
                Affiliations
                [1 ]Department of Statistics, 404 Cockins Hall, 1958 Neil Avenue, Columbus, OH 43210. USA
                [2 ]Center for Biostatistics, M200 Starling Loving Hall, 320 West 10th Avenue, Columbus, OH 43210. USA
                [3 ]Department of Pediatrics, Division of Emergency Medicine, Columbus Children's Hospital, 700 Children's Drive, Columbus, OH 43205. USA
                Article
                1472-6947-7-28
                10.1186/1472-6947-7-28
                2203979
                17919318
                8fa13125-7cdf-49eb-8ae8-d3596e4c55cb
                Copyright © 2007 Craigmile et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 January 2007
                : 5 October 2007
                Categories
                Research Article

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article