110
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cryptic animal species are homogeneously distributed among taxa and biogeographical regions

      research-article
      1 , , 1
      BMC Evolutionary Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cryptic species are two or more distinct but morphologically similar species that were classified as a single species. During the past two decades we observed an exponential growth of publications on cryptic species. Recently published reviews have demonstrated cryptic species have profound consequences on many biological disciplines. It has been proposed that their distribution is non-random across taxa and biomes.

          Results

          We analysed a literature database for the taxonomic and biogeographical distribution of cryptic animal species reports. Results from regression analysis indicate that cryptic species are almost evenly distributed among major metazoan taxa and biogeographical regions when corrected for species richness and study intensity.

          Conclusion

          This indicates that morphological stasis represents an evolutionary constant and that cryptic metazoan diversity does predictably affect estimates of earth's animal diversity. Our findings have direct theoretical and practical consequences for a number of prevailing biological questions with regard to global biodiversity estimates, conservation efforts and global taxonomic initiatives.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Cryptic species as a window on diversity and conservation.

          The taxonomic challenge posed by cryptic species (two or more distinct species classified as a single species) has been recognized for nearly 300 years, but the advent of relatively inexpensive and rapid DNA sequencing has given biologists a new tool for detecting and differentiating morphologically similar species. Here, we synthesize the literature on cryptic and sibling species and discuss trends in their discovery. However, a lack of systematic studies leaves many questions open, such as whether cryptic species are more common in particular habitats, latitudes or taxonomic groups. The discovery of cryptic species is likely to be non-random with regard to taxon and biome and, hence, could have profound implications for evolutionary theory, biogeography and conservation planning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How many species are there on Earth?

            R M May (1988)
            This article surveys current answers to the factual question posed in the title and reviews the kinds of information that are needed to make these answers more precise. Various factors affecting diversity are also reviewed. These include the structure of food webs, the relative abundance of species, the number of species and of individuals in different categories of body size, along with other determinants of the commonness and rarity of organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Taxonomic inflation: its influence on macroecology and conservation.

              Species numbers are increasing rapidly. This is due mostly to taxonomic inflation, where known subspecies are raised to species as a result in a change in species concept, rather than to new discoveries. Yet macroecologists and conservation biologists depend heavily on species lists, treating them as accurate and stable measures of biodiversity. Deciding on a standardized, universal species list might ameliorate the mismatch between taxonomy and the uses to which it is put. However, taxonomic uncertainty is ultimately due to the evolutionary nature of species, and is unlikely to be solved completely by standardization. For the moment, at least, users must acknowledge the limitations of taxonomic species and avoid unrealistic expectations of species lists.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central (London )
                1471-2148
                2007
                19 July 2007
                : 7
                : 121
                Affiliations
                [1 ]Abteilung Ökologie & Evolution, J.W. Goethe-Universität, Biologie Campus Siesmayerstraße, 60054 Frankfurt am Main, Germany
                Article
                1471-2148-7-121
                10.1186/1471-2148-7-121
                1939701
                17640383
                8fa2d625-b176-47d1-a7f8-27ba26aef27a
                Copyright © 2007 Pfenninger and Schwenk; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 April 2007
                : 19 July 2007
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article