11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Black phosphorus analogue tin sulfide nanosheets as photothermal and drug delivery agents with high drug loading capacity for cancer therapy.

          Abstract

          Two-dimensional (2D) inorganic nanomaterials for biomedical applications still face the challenge of simultaneously offering a high photothermal conversion efficiency (PTCE), efficient drug delivery, biocompatibility and biodegradability. Herein, cancer treatment using tin sulfide nanosheet (SnS NS)-based dual therapy nano-platforms (SDTNPs), including photothermal- and chemo-therapy, is demonstrated. SnS, a black phosphorus (BP) analogue binary IV–VI compound, was synthesized using liquid phase exfoliation. SnS NSs comprising 2–4 layers exhibited good biocompatibility and a high PTCE of 39.3%, which is higher than other popular 2D materials. The SnS NSs showed a stable photothermal performance over 2 h of laser irradiation and exhibited ∼14% degradation after 10 h of irradiation. It was also found that SnS NSs show high loading of small molecules such as doxorubicin (DOX) (up to ∼200% in weight). Consequently, the SDTNPs achieved notable tumor therapy through the combination of photothermal- and chemo-therapy both in vitro and in vivo. Our study may pave the way for the biomedical application of SnS and other IV–VI compound-based 2D nanomaterials. Compared with traditional therapies, SnS NS-based laser therapy is green and efficient, due to its biocompatibility, photo-degradability, high efficiency photothermal properties and high drug loading.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Electric Field Effect in Atomically Thin Carbon Films

          We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PEGylated nanographene oxide for delivery of water-insoluble cancer drugs.

            It is known that many potent, often aromatic drugs are water insoluble, which has hampered their use for disease treatment. In this work, we functionalized nanographene oxide (NGO), a novel graphitic material, with branched polyethylene glycol (PEG) to obtain a biocompatible NGO-PEG conjugate stable in various biological solutions, and used them for attaching hydrophobic aromatic molecules including a camptothecin (CPT) analogue, SN38, noncovalently via pi-pi stacking. The resulting NGO-PEG-SN38 complex exhibited excellent water solubility while maintaining its high cancer cell killing potency similar to that of the free SN38 molecules in organic solvents. The efficacy of NGO-PEG-SN38 was far higher than that of irinotecan (CPT-11), a FDA-approved water soluble SN38 prodrug used for the treatment of colon cancer. Our results showed that graphene is a novel class of material promising for biological applications including future in vivo cancer treatment with various aromatic, low-solubility drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Black phosphorus field-effect transistors

              Two-dimensional crystals have emerged as a new class of materials with novel properties that may impact future technologies. Experimentally identifying and characterizing new functional two-dimensional materials in the vast material pool is a tremendous challenge, and at the same time potentially rewarding. In this work, we succeed in fabricating field-effect transistors based on few-layer black phosphorus crystals with thickness down to a few nanometers. Drain current modulation on the order of 10E5 is achieved in samples thinner than 7.5 nm at room temperature, with well-developed current saturation in the IV characteristics, both are important for reliable transistor performance of the device. Sample mobility is also found to be thickness dependent, with the highest value up to ~ 1000 cm2/Vs obtained at thickness ~ 10 nm. Our results demonstrate the potential of black phosphorus thin crystal as a new two-dimensional material for future applications in nano-electronic devices.
                Bookmark

                Author and article information

                Journal
                JMCBDV
                Journal of Materials Chemistry B
                J. Mater. Chem. B
                Royal Society of Chemistry (RSC)
                2050-750X
                2050-7518
                2018
                2018
                : 6
                : 29
                : 4747-4755
                Affiliations
                [1 ]Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province
                [2 ]Shenzhen University
                [3 ]Shenzhen 518060
                [4 ]China
                [5 ]Department of Hepatobiliary and Pancreatic Surgery, the 2nd Clinical Medicine College (Shenzhen People's Hospital) of Jinan University
                [6 ]Shenzhen 518020
                [7 ]Integrated Chinese and Western Medicine Postdoctoral Research Station
                [8 ]Jinan University
                [9 ]Center for Nanomedicine and Department of Anesthesiology
                [10 ]Brigham and Women's Hospital
                [11 ]Harvard Medical School
                [12 ]Boston
                [13 ]USA
                Article
                10.1039/C8TB00729B
                32254302
                8fabe137-7311-4803-a0fa-6d4d36c6d7f8
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article