7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aglycemic HepG2 Cells Switch From Aminotransferase Glutaminolytic Pathway of Pyruvate Utilization to Complete Krebs Cycle at Hypoxia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human hepatocellular carcinoma HepG2 cells are forced to oxidative phosphorylation (OXPHOS), when cultured in aglycemic conditions at galactose and glutamine. These O xphos cells represent a prototype of cancer cell bioenergetics with mixed aerobic glycolysis and OXPHOS. We aimed to determine fractions of (i) glutaminolytic pathway involving aminotransferase reaction supplying 2-oxoglutarate (2OG) to the Krebs cycle vs. (ii) active segment of the Krebs cycle with aconitase and isocitrate dehydrogenase-3 (ACO-IDH3), which is typically inactive in cancer cells due to the citrate export from mitochondria. At normoxia, O xphos cell respiration was decreased down to ~15 and ~10% by the aminotransferase inhibitor aminooxyacetate (AOA) or with AOA plus the glutamate-dehydrogenase inhibitor bithionol, respectively. Phosphorylating to non-phosphorylating respiration ratios dropped from >6.5 to 1.9 with AOA and to zero with AOA plus bithionol. Thus, normoxic O xphos HepG2 cells rely predominantly on glutaminolysis. Addition of membrane-permeant dimethyl-2-oxoglutarate (dm2OG) to inhibited cells instantly partially restored respiration, evidencing the lack of 2OG-dehydrogenase substrate upon aminotransferase inhibition. Surprisingly, after 72 hr of 5% O 2 hypoxia, the AOA (bithionol) inhibition ceased and respiration was completely restored. Thus in aglycemic HepG2 cells, the hypoxia-induced factor (HIF) upregulation of glycolytic enzymes enabled acceleration of glycolysis pathway, preceded by galactolysis (Leloir pathway), redirecting pyruvate via still incompletely blocked pyruvate dehydrogenase toward the ACO-IDH3. Glycolytic flux upregulation at hypoxia was evidently matched by a higher activity of the Leloir pathway in O xphos cells. Hypoxic O xphos cells increased 2-fold the NADPH oxidase activity, whereas hypoxic glycolytic cells decreased it. O xphos cells and glycolytic cells at 5 mM glucose decreased their reduced glutathione fraction. In contrast to aglycemic cells, glycolytic HepG2 cells decreased their respiration at hypoxia despite the dm2OG presence, i.e., even at unlimited respiratory substrate availability for 72 hr at 5% O 2, exhibiting the canonical HIF-mediated adaptation. Nevertheless, their ATP content was much higher with dm2OG as compared to its absence during hypoxic adaptation. Thus, the metabolic plasticity of cancer cells is illustrated under conditions frequently established for solid tumors in vivo, such as aglycemia plus hypoxia. Consequently, a wide acceptance of the irreversible and exclusive Warburg phenotype in cancer cells is incorrect.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response.

          Tumour hypoxia is increasingly recognized as a major deleterious factor in cancer therapies, as it compromises treatment and drives malignant progression. This review seeks to clarify the oxygen levels that are pertinent to this issue. It is argued that normoxia (20% oxygen) is an extremely poor comparator for "physoxia", i.e. the much lower levels of oxygen universally found in normal tissues, which averages about 5% oxygen, and ranges from about 3% to 7.4%. Importantly, it should be recognized that the median oxygenation in untreated tumours is significantly much lower, falling between approximately 0.3% and 4.2% oxygen, with most tumours exhibiting median oxygen levels <2%. This is partially dependent on the tissue of origin, and it is notable that many prostate and pancreatic tumours are profoundly hypoxic. In addition, therapy can induce even further, often unrecognized, changes in tumour oxygenation that may vary longitudinally, increasing or decreasing during treatment in ways that are not always predictable. Studies that fail to take cognizance of the actual physiological levels of oxygen in tissues (approximately 5%) and tumours (approximately 1%) may fail to identify the real circumstances driving tumour response to treatment and/or malignant progression. This can be of particular importance in genetic studies in vitro when comparison to human tumours is required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells.

            Comparative analysis of cytoplasmic organelles in a variety of tumors relative to normal tissues generally reveals a strong diminution in mitochondrial content and in oxidative phosphorylation capacity. However, little is known about what triggers these modifications and whether or not they are physiologically reversible. We hypothesized that energy substrate availability could play an important role in this phenomenon. The physiological effects of a change in substrate availability were examined on a human cancer cell line (HeLa), focusing specifically on its ability to use glycolysis versus oxidative phosphorylation, and the effect that energy substrate type has on mitochondrial composition, structure, and function. Changes in oxidative phosphorylation were measured in vivo by a variety of techniques, including the use of two novel ratiometric green fluorescent protein biosensors, the expression level of oxidative phosphorylation and some glycolytic enzymes were determined by Western blot, mitochondrial DNA content was measured by real-time PCR, and mitochondrial morphology was monitored by both confocal and electron microscopy. Our data show that the defective mitochondrial system described in cancer cells can be dramatically improved by solely changing substrate availability and that HeLa cells can adapt their mitochondrial network structurally and functionally to derive energy by glutaminolysis only. This could also provide an explanation for the enhancement of oxidative phosphorylation capacity observed after tumor regression or removal. Our work demonstrates that the pleomorphic, highly dynamic structure of the mitochondrion can be remodeled to accommodate a change in oxidative phosphorylation activity. We compared our finding on HeLa cells with those for nontransformed fibroblasts to help distinguish the regulatory pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells

              The idea that conversion of glucose to ATP is an attractive target for cancer therapy has been supported in part by the observation that glucose deprivation induces apoptosis in rodent cells transduced with the proto-oncogene MYC, but not in the parental line. Here, we found that depletion of glucose killed normal human cells irrespective of induced MYC activity and by a mechanism different from apoptosis. However, depletion of glutamine, another major nutrient consumed by cancer cells, induced apoptosis depending on MYC activity. This apoptosis was preceded by depletion of the Krebs cycle intermediates, was prevented by two Krebs cycle substrates, but was unrelated to ATP synthesis or several other reported consequences of glutamine starvation. Our results suggest that the fate of normal human cells should be considered in evaluating nutrient deprivation as a strategy for cancer therapy, and that understanding how glutamine metabolism is linked to cell viability might provide new approaches for treatment of cancer.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                26 October 2018
                2018
                : 9
                : 637
                Affiliations
                Department of Mitochondrial Physiology, Institute of Physiology, Academy of Sciences of the Czech Republic , Prague, Czechia
                Author notes

                Edited by: Jan Polák, Charles University, Czechia

                Reviewed by: Céline Pinheiro, Faculdade de Ciências da Saúde de Barretos Dr. Paulo Prata, Brazil; Anne Devin, Centre National de la Recherche Scientifique (CNRS), France

                *Correspondence: Petr Ježek jezek@ 123456biomed.cas.cz

                This article was submitted to Diabetes, a section of the journal Frontiers in Endocrinology

                †Present Address: Jan Ježek, Department of Molecular Biology, Rowan University, Stratford, NJ, United States orcid.org/0000-0003-0295-066X

                Article
                10.3389/fendo.2018.00637
                6212521
                30416487
                8fb247dc-4529-4abd-ba4b-509266611522
                Copyright © 2018 Ježek, Plecitá-Hlavatá and Ježek.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 July 2018
                : 08 October 2018
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 58, Pages: 14, Words: 8844
                Funding
                Funded by: Grantová Agentura České Republiky 10.13039/501100001824
                Award ID: 17-01813S
                Categories
                Endocrinology
                Original Research

                Endocrinology & Diabetes
                cancer mitochondria,hepg2 cells,hypoxia,glutaminolysis,aminotransferase inhibiton,warburg phenotype

                Comments

                Comment on this article