13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Enterohepatic bile salt transporters in normal physiology and liver disease.

      Gastroenterology
      Animals, Bile Acids and Salts, metabolism, Carrier Proteins, blood, Enterohepatic Circulation, Humans, Liver, Liver Diseases, Protein Processing, Post-Translational

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The vectorial transport of bile salts from blood into bile is essential for the generation of bile flow, solubilization of cholesterol in bile, and emulsification of lipids in the intestine. Major transport proteins involved in the enterohepatic circulation of bile salts include the hepatocellular bile salt export pump (BSEP, ABCB11), the apical sodium-dependent bile salt transporter (ASBT, SLC10A2) in cholangiocytes and enterocytes, the sodium-dependent hepatocyte bile salt uptake system NTCP (SLC10A1), the organic anion transporting polypeptides OATP-C (SLC21A6), OATP8 (SLC21A8) and OATP-A (SLC21A3), and the multidrug resistance protein MRP3 (ABCC3). Synthesis and transport of bile salts are intricately linked processes that undergo extensive feedback and feed-forward regulation by transcriptional and posttranscriptional mechanisms. A key regulator of hepatocellular bile salt homeostasis is the bile acid receptor/farnesoid X receptor FXR, which activates transcription of the BSEP and OATP8 genes and of the small heterodimer partner 1 (SHP). SHP is a transcriptional repressor that mediates bile acid-induced repression of the bile salt uptake systems rat Ntcp and human OATP-C. A nuclear receptor that activates rodent Oatp2 (Slc21a5) and human MRP2 (ABCC2) is the pregnane X receptor/steroid X receptor PXR/SXR. Intracellular trafficking and membrane insertion of bile salt transporters is regulated by lipid, protein, and extracellular signal-related kinases in response to physiologic stimuli such as cyclic adenosine monophosphate or taurocholate. Finally, dysfunction of individual bile salt transporters such as BSEP, on account of genetic mutations, steric inhibition, suppression of gene expression, or disturbed signaling, is an important cause of cholestatic liver disease.

          Related collections

          Author and article information

          Journal
          14699511
          10.1053/j.gastro.2003.06.005

          Chemistry
          Animals,Bile Acids and Salts,metabolism,Carrier Proteins,blood,Enterohepatic Circulation,Humans,Liver,Liver Diseases,Protein Processing, Post-Translational

          Comments

          Comment on this article