3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Primary Cilia Blockage Promotes the Malignant Behaviors of Hepatocellular Carcinoma via Induction of Autophagy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Primary cilia are organelles protruding from cell surface into environment that function in regulating cell cycle and modulating cilia-related signal. Primary ciliogenesis and autophagy play important roles in tumorigenesis. However, the functions and interactions between primary cilia and autophagy in hepatocellular carcinoma (HCC) have not been reported yet. Here, we aimed to investigate the relationship and function of primary cilia and autophagy in HCC. In vitro, we showed that serum starvation stimuli could trigger primary ciliogenesis in HCC cells. Blockage of primary ciliogenesis by IFT88 silencing enhanced the proliferation, migration, and invasion ability of HCC cells. In addition, inhibition of primary cilia could positively regulate autophagy. However, the proliferation, migration, and invasion ability which were promoted by IFT88 silencing could be partly reversed by inhibition of autophagy. In vivo, interference of primary cilia led to acceleration of tumor growth and increase of autophagic flux in xenograft HCC mouse models. Moreover, IFT88 high expression or ATG7 low expression in HCC tissues was correlated with longer survival time indicated by the Cancer Genome Atlas (TCGA) analysis. In conclusion, our study demonstrated that blockage of primary ciliogenesis by IFT88 silencing had protumor effects through induction of autophagy in HCC. These findings define a newly recognized role of primary cilia and autophagy in HCC.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The vertebrate primary cilium in development, homeostasis, and disease.

          Cilia are complex structures that have garnered interest because of their roles in vertebrate development and their involvement in human genetic disorders. In contrast to multicellular invertebrates in which cilia are restricted to specific cell types, these organelles are found almost ubiquitously in vertebrate cells, where they serve a diverse set of signaling functions. Here, we highlight properties of vertebrate cilia, with particular emphasis on their relationship with other subcellular structures, and explore the physiological consequences of ciliary dysfunction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling.

            The primary cilium is required for Sonic hedgehog (Shh) signaling in vertebrates. In contrast to mutants affecting ciliary assembly, mutations in the intraflagellar transport complex A (IFT-A) paradoxically cause increased Shh signaling. We previously showed that the IFT-A complex, in addition to its canonical role in retrograde IFT, binds to the tubby-like protein, Tulp3, and recruits it to cilia. Here, we describe a conserved vertebrate G-protein-coupled receptor, Gpr161, which localizes to primary cilia in a Tulp3/IFT-A-dependent manner. Complete loss of Gpr161 in mouse causes midgestation lethality and increased Shh signaling in the neural tube, phenocopying Tulp3/IFT-A mutants. Constitutive Gpr161 activity increases cAMP levels and represses Shh signaling by determining the processing of Gli3 to its repressor form. Conversely, Shh signaling directs Gpr161 to be internalized from cilia, preventing its activity. Thus, Gpr161 defines a morphogenetic pathway coupling protein kinase A activation to Shh signaling during neural tube development. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional interaction between autophagy and ciliogenesis

              Summary Nutrient deprivation is a stimulus shared by both autophagy and the formation of primary cilia. The recently discovered role of primary cilia in nutrient sensing and signaling motivated us to explore the possible functional interactions between this signaling hub and autophagy. Here we show that part of the molecular machinery involved in ciliogenesis also participates in the early steps of the autophagic process. Signaling from the cilia, such as that from the Hedgehog pathway, induces autophagy by acting directly on essential autophagy-related proteins strategically located in the base of the cilium by ciliary trafficking proteins. While abrogation of ciliogenesis partially inhibits autophagy, blockage of autophagy enhances primary cilia growth and cilia-associated signaling during normal nutritional conditions. We propose that basal autophagy regulates ciliary growth through the degradation of proteins required for intraflagellar transport. Compromised ability to activate the autophagic response may underlie the basis of some common ciliopathies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2019
                2 October 2019
                : 2019
                : 5202750
                Affiliations
                Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
                Author notes

                Academic Editor: Sung-Hoon Kim

                Author information
                https://orcid.org/0000-0003-0001-8473
                https://orcid.org/0000-0002-6300-1460
                Article
                10.1155/2019/5202750
                6791284
                31662980
                8fbf6d95-696e-4b69-9180-65b1187ddde7
                Copyright © 2019 Lian Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 June 2019
                : 5 September 2019
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81372663
                Award ID: 81672392
                Award ID: 81772969
                Funded by: State Key Laboratory of Cancer Biology
                Award ID: CBSKL201720
                Funded by: Natural Science Foundation of Hubei Province
                Award ID: 2017CFB457
                Categories
                Research Article

                Comments

                Comment on this article