Blog
About

59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chloroplast signaling within, between and beyond cells

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The most conspicuous function of plastids is the oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that plastids possess their own genomes whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nuclei, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling, has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet less widely known aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order to avoid unintended consequences on plant growth and development.

          Related collections

          Most cited references 335

          • Record: found
          • Abstract: found
          • Article: not found

          Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.

          Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O(2)(-), superoxide radicals; OH, hydroxyl radical; HO(2), perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H(2)O(2), hydrogen peroxide and (1)O(2), singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of (1)O(2) and O(2)(-). In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O(2)(-). The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitofusin 2 tethers endoplasmic reticulum to mitochondria.

            Juxtaposition between endoplasmic reticulum (ER) and mitochondria is a common structural feature, providing the physical basis for intercommunication during Ca(2+) signalling; yet, the molecular mechanisms controlling this interaction are unknown. Here we show that mitofusin 2, a mitochondrial dynamin-related protein mutated in the inherited motor neuropathy Charcot-Marie-Tooth type IIa, is enriched at the ER-mitochondria interface. Ablation or silencing of mitofusin 2 in mouse embryonic fibroblasts and HeLa cells disrupts ER morphology and loosens ER-mitochondria interactions, thereby reducing the efficiency of mitochondrial Ca(2+) uptake in response to stimuli that generate inositol-1,4,5-trisphosphate. An in vitro assay as well as genetic and biochemical evidences support a model in which mitofusin 2 on the ER bridges the two organelles by engaging in homotypic and heterotypic complexes with mitofusin 1 or 2 on the surface of mitochondria. Thus, mitofusin 2 tethers ER to mitochondria, a juxtaposition required for efficient mitochondrial Ca(2+) uptake.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Networking by small-molecule hormones in plant immunity.

              Plants live in complex environments in which they intimately interact with a broad range of microbial pathogens with different lifestyles and infection strategies. The evolutionary arms race between plants and their attackers provided plants with a highly sophisticated defense system that, like the animal innate immune system, recognizes pathogen molecules and responds by activating specific defenses that are directed against the invader. Recent advances in plant immunity research have provided exciting new insights into the underlying defense signaling network. Diverse small-molecule hormones play pivotal roles in the regulation of this network. Their signaling pathways cross-communicate in an antagonistic or synergistic manner, providing the plant with a powerful capacity to finely regulate its immune response. Pathogens, on the other hand, can manipulate the plant's defense signaling network for their own benefit by affecting phytohormone homeostasis to antagonize the host immune response.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                06 October 2015
                2015
                : 6
                Affiliations
                Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville TN, USA
                Author notes

                Edited by: Steven James Burgess, University of Cambridge, UK

                Reviewed by: Taras P. Pasternak, Albert-Ludwigs-Universität Freiburg, Germany; Thomas Pfannschmidt, Joseph Fourier University, France

                *Correspondence: Tessa M. Burch-Smith, Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, 1414 Cumberland Avenue, M407 Walters Life Science, Knoxville, TN 37932, USA, tburchsm@ 123456utk.edu

                This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2015.00781
                4593955
                Copyright © 2015 Bobik and Burch-Smith.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 332, Pages: 26, Words: 0
                Funding
                Funded by: National Science Foundation 10.13039/100000001
                Award ID: 1456761
                Categories
                Plant Science
                Review

                Comments

                Comment on this article