30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Incomplete Normalization of Regulatory T-Cell Frequency in the Gut Mucosa of Colombian HIV-Infected Patients Receiving Long-Term Antiretroviral Treatment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          To evaluate the effect of late initiation of HAART and poor immune reconstitution on the frequency of regulatory T-cells (Treg) in the peripheral blood and gut of HIV-infected patients, we studied Colombian HIV-infected patients who had been on suppressive HAART for at least one year. They had undetectable viremia but were either immunological responders (HIR); (CD4 counts >500 cells/µl) or non-immunological responders (NIR); (CD4 T-cell count <300 cells/µl). Untreated HIV-infected patients and uninfected controls from the same region were also evaluated.

          Methods

          Frequency and phenotype of regulatory T-cells (Treg) were analyzed in gut biopsies and blood samples. The functional effect of Treg depletion on CMV and HIV responses was determined. Markers of immune activation and circulating LPS levels were quantified.

          Results

          Untreated patients exhibited high Treg frequency in PBMC and gut, and their Treg express high levels of CTLA-4 and PD-1. Although HAART significantly decreased mucosal Treg frequency, it did not normalize it in any of the treated groups (HIR and NIR patients). Treg normalization was observed in the blood of HIR patients following HAART, but did not occur in NIR patients. Treg from HIV-infected patients (treated or not) suppressed HIV and hCMV-specific T-cells from gut and blood. Plasma LPS levels and percentage of HLA-DR+CD38+ T-cells were significantly elevated in all infected groups compared to controls.

          Conclusions

          These findings suggest that control of viral replication is not sufficient to normalize gut Treg frequency in patients, independent of their response to HAART. Furthermore, persistence of functional Treg in the gut appears to be associated with the failure of HAART to repair mucosal damage.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory T cells: how do they suppress immune responses?

          Regulatory T cells (Tregs), either natural or induced, suppress a variety of physiological and pathological immune responses. One of the key issues for understanding Treg function is to determine how they suppress other lymphocytes at the molecular level in vivo and in vitro. Here we propose that there may be a key suppressive mechanism that is shared by every forkhead box p3 (Foxp3)(+) Treg in vivo and in vitro in mice and humans. When this central mechanism is abrogated, it causes a breach in self-tolerance and immune homeostasis. Other suppressive mechanisms may synergistically operate with this common mechanism depending on the environment and the type of an immune response. Further, Treg-mediated suppression is a multi-step process and impairment or augmentation of each step can alter the ultimate effectiveness of Treg-mediated suppression. These findings will help to design effective ways for controlling immune responses by targeting Treg suppressive functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation.

            Naturally occurring CD4(+)CD25(+) regulatory T cells (Treg) suppress in vitro the proliferation of other T cells in a cell-contact-dependent manner. Dendritic cells (DCs) appear to be a target of Treg-mediated immune suppression. We show here that, in coculture of dye-labeled Treg cells and CD4(+)CD25(-) naïve T cells in the presence of T cell receptor stimulation, Treg cells, which are more mobile than naïve T cells in vitro, out-compete the latter in aggregating around DCs. Deficiency or blockade of leukocyte function-associated antigen-1 (LFA-1) (CD11a/CD18) abrogates Treg aggregation, whereas that of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) (CD152) does not. After forming aggregates, Treg cells specifically down-regulate the expression of CD80/86, but not CD40 or class II MHC, on DCs in both a CTLA-4- and LFA-1-dependent manner. Notably, Treg exerts this CD80/86-down-modulating effect even in the presence of strong DC-maturating stimuli, such as GM-CSF, TNF-alpha, IFN-gamma, type I IFN, and lipopolysaccharide. Taken together, as a possible mechanism of in vitro Treg-mediated cell contact-dependent suppression, we propose that antigen-activated Treg cells exert suppression by two distinct steps: initial LFA-1-dependent formation of Treg aggregates on immature DCs and subsequent LFA-1- and CTLA-4-dependent active down-modulation of CD80/86 expression on DCs. Both steps prevent antigen-reactive naïve T cells from being activated by antigen-presenting DCs, resulting in specific immune suppression and tolerance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease.

              Highly active antiretroviral therapy (HAART) increases CD4(+) cell numbers, but its ability to correct the human immunodeficiency virus (HIV)-induced immune deficiency remains unknown. A three-phase T cell reconstitution was demonstrated after HAART, with: (i) an early rise of memory CD4(+) cells, (ii) a reduction in T cell activation correlated to the decreasing retroviral activity together with an improved CD4(+) T cell reactivity to recall antigens, and (iii) a late rise of "naïve" CD4(+) lymphocytes while CD8(+) T cells declined, however, without complete normalization of these parameters. Thus, decreasing the HIV load can reverse HIV-driven activation and CD4(+) T cell defects in advanced HIV-infected patients.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                15 August 2013
                : 8
                : 8
                : e71062
                Affiliations
                [1 ]Grupo Inmunovirologia, Universidad de Antioquia, Medellín, Antioquia, Colombia
                [2 ]Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
                University of Hawaii, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CMR PAV. Performed the experiments: CMR. Analyzed the data: CMR PAV CAC MTR. Contributed reagents/materials/analysis tools: MTR. Wrote the paper: CMR PAV CAC MTR.

                Article
                PONE-D-13-10382
                10.1371/journal.pone.0071062
                3744540
                23967152
                8fd0eaef-17bf-48ec-a9c1-fb3f3b83929f
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 March 2013
                : 25 June 2013
                Page count
                Pages: 9
                Funding
                This study was supported by Colciencias (grant 111540820490-1), “Programa Estrategia de Sostenibilidad 2013–2014”, Universidad de Antioquia and NIH R01 AI068524 (to CAC). CMR is a recipient of a doctoral scholarship from Colciencias. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine
                Drugs and Devices
                Infectious Diseases
                Viral Diseases
                HIV
                HIV diagnosis and management
                Retrovirology and HIV immunopathogenesis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article