17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of RTEL1 gene polymorphisms with stroke risk in a Chinese Han population

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated the associations between single nucleotide polymorphisms (SNPs) in the regulator of telomere elongation helicase 1 ( RTEL1) gene and stroke in the Chinese population. A total of 400 stroke patients and 395 healthy participants were included in this study. Five SNPs in RTEL1 were genotyped and the association with stroke risk was analyzed. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using unconditional logistic regression analysis. Multivariate logistic regression analysis was used to identify SNPs that correlated with stroke. Rs2297441 was associated with an increased risk of stroke in an allele model (odds ratio [OR] = 1.24, 95% confidence interval [95% CI] = 1.01–1.52, p = 0.043). Rs6089953 was associated with an increased risk of stroke under the genotype model ([OR] = 1.862, [CI] = 1.123–3.085, p = 0.016). Rs2297441 was associated with an increased risk of stroke in an additive model (OR = 1.234, 95% CI = 1.005, p = 0.045, Rs6089953, Rs6010620 and Rs6010621 were associated with an increased risk of stroke in the recessive model (Rs6089953:OR = 1.825, 95% CI = 1.121–2.969, p =0.01546; Rs6010620: OR = 1.64, 95% CI = 1.008–2.669, p =0.04656;Rs6010621:OR = 1.661, 95% CI = 1.014–2.722, p =0.04389). Our findings reveal a possible association between SNPs in the RTEL1 gene and stroke risk in Chinese population.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Obesity, cigarette smoking, and telomere length in women.

          Obesity and smoking are important risk factors for many age-related diseases. Both are states of heightened oxidative stress, which increases the rate of telomere erosion per replication, and inflammation, which enhances white blood cell turnover. Together, these processes might accelerate telomere erosion with age. We therefore tested the hypothesis that increased body mass and smoking are associated with shortened telomere length in white blood cells. We investigated 1122 white women aged 18-76 years and found that telomere length decreased steadily with age at a mean rate of 27 bp per year. Telomeres of obese women were 240 bp shorter than those of lean women (p=0.026). A dose-dependent relation with smoking was recorded (p=0.017), and each pack-year smoked was equivalent to an additional 5 bp of telomere length lost (18%) compared with the rate in the overall cohort. Our results emphasise the pro-ageing effects of obesity and cigarette smoking.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-throughput oncogene mutation profiling in human cancer.

            Systematic efforts are underway to decipher the genetic changes associated with tumor initiation and progression. However, widespread clinical application of this information is hampered by an inability to identify critical genetic events across the spectrum of human tumors with adequate sensitivity and scalability. Here, we have adapted high-throughput genotyping to query 238 known oncogene mutations across 1,000 human tumor samples. This approach established robust mutation distributions spanning 17 cancer types. Of 17 oncogenes analyzed, we found 14 to be mutated at least once, and 298 (30%) samples carried at least one mutation. Moreover, we identified previously unrecognized oncogene mutations in several tumor types and observed an unexpectedly high number of co-occurring mutations. These results offer a new dimension in tumor genetics, where mutations involving multiple cancer genes may be interrogated simultaneously and in 'real time' to guide cancer classification and rational therapeutic intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction.

              The functional changes associated with cellular senescence may be involved in human aging and age-related vascular disorders. We have shown the important role of telomere and telomerase in vascular cell senescence in vitro. Progressive telomere shortening in vivo has been observed in the regions susceptible to atherosclerosis, implying contributions to atherogenesis. However, whether senescent vascular cells are present in the vasculature and contribute to the pathogenesis of atherosclerosis remains unclear. Senescence-associated beta-galactosidase (beta-gal) activity was examined in the coronary arteries and the internal mammary arteries retrieved from autopsied individuals who had had ischemic heart diseases. Strong beta-gal stainings were observed in atherosclerotic lesions of the coronary arteries but not in the internal mammary arteries. An immunohistochemical analysis using anti-factor VIII antibody demonstrated that beta-gal stained cells are vascular endothelial cells. To determine whether endothelial cell senescence causes endothelial dysfunction, we induced senescence in human aortic endothelial cells (HAECs) by inhibiting telomere function and examined the expression of intercellular adhesion molecule (ICAM)-1 and endothelial nitric oxide synthase (eNOS) activity. Senescent HAECs exhibited increased ICAM-1 expression and decreased eNOS activity, both of which are alterations implicated in atherogenesis. In contrast, introduction of telomerase catalytic component significantly extended the life span and inhibited the functional alterations associated with senescence in HAECs. Vascular endothelial cells with senescence-associated phenotypes are present in human atherosclerotic lesions, and endothelial cell senescence induced by telomere shortening may contribute to atherogenesis.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                29 December 2017
                5 December 2017
                : 8
                : 70
                : 114995-115001
                Affiliations
                1 Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical College, Hainan 570311, China
                Author notes
                Correspondence to: Faqing Long, qingfalong@ 123456sina.com
                Article
                22980
                10.18632/oncotarget.22980
                5777748
                29383136
                8fd19159-e2b5-4cc3-8bfd-6a717db110f2
                Copyright: © 2017 Cai et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 27 September 2017
                : 15 November 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                single nucleotide polymorphisms (snps),rtel1,telomere,stroke,case-control study

                Comments

                Comment on this article