15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Changes in Anthocyanin Production during Domestication of Citrus.

      1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18
      Plant physiology
      American Society of Plant Biologists (ASPB)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mandarin (Citrus reticulata), citron (Citrus medica), and pummelo (Citrus maxima) are important species of the genus Citrus and parents of the interspecific hybrids that constitute the most familiar commercial varieties of Citrus: sweet orange, sour orange, clementine, lemon, lime, and grapefruit. Citron produces anthocyanins in its young leaves and flowers, as do species in genera closely related to Citrus, but mandarins do not, and pummelo varieties that produce anthocyanins have not been reported. We investigated the activity of the Ruby gene, which encodes a MYB transcription factor controlling anthocyanin biosynthesis, in different accessions of a range of Citrus species and in domesticated cultivars. A white mutant of lemon lacks functional alleles of Ruby, demonstrating that Ruby plays an essential role in anthocyanin production in Citrus Almost all the natural variation in pigmentation by anthocyanins in Citrus species can be explained by differences in activity of the Ruby gene, caused by point mutations and deletions and insertions of transposable elements. Comparison of the allelic constitution of Ruby in different species and cultivars also helps to clarify many of the taxonomic relationships in different species of Citrus, confirms the derivation of commercial varieties during domestication, elucidates the relationships within the subgenus Papeda, and allows a new genetic classification of mandarins.

          Related collections

          Author and article information

          Journal
          Plant Physiol.
          Plant physiology
          American Society of Plant Biologists (ASPB)
          1532-2548
          0032-0889
          Apr 2017
          : 173
          : 4
          Affiliations
          [1 ] John Innes Centre, Norwich NR4 7UH, United Kingdom (E.B., L.H., C.M.); eugenio.butelli@jic.ac.uk.
          [2 ] Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain (A.G.-L., L.N.); eugenio.butelli@jic.ac.uk.
          [3 ] Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, 95024 Acireale, Italy (C.L., G.R.-R.); eugenio.butelli@jic.ac.uk.
          [4 ] Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, 95123 Catania, Italy (G.L.C.); eugenio.butelli@jic.ac.uk.
          [5 ] United States Department of Agriculture-Agricultural Research Service National Clonal Germplasm Repository for Citrus and Dates, Riverside, California 92507-5437 (M.L.K., R.K.); eugenio.butelli@jic.ac.uk.
          [6 ] University of California, Riverside, California 92521 (C.R.); eugenio.butelli@jic.ac.uk.
          [7 ] Key Laboratory of Horticultural Plant Biology of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China (Q.X., X.D.); eugenio.butelli@jic.ac.uk.
          [8 ] Institut National de la Recherche Agronomique, UR1115 PSH, F-84914 Avignon, France (A.-L.F.); and eugenio.butelli@jic.ac.uk.
          [9 ] CIRAD, Unité Mixte de Recherche AGAP, Station Institut National de la Recherche Agronomique, F-20230 San Giuliano, France (Y.F.) eugenio.butelli@jic.ac.uk.
          [10 ] John Innes Centre, Norwich NR4 7UH, United Kingdom (E.B., L.H., C.M.).
          [11 ] Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain (A.G.-L., L.N.).
          [12 ] Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, 95024 Acireale, Italy (C.L., G.R.-R.).
          [13 ] Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, 95123 Catania, Italy (G.L.C.).
          [14 ] United States Department of Agriculture-Agricultural Research Service National Clonal Germplasm Repository for Citrus and Dates, Riverside, California 92507-5437 (M.L.K., R.K.).
          [15 ] University of California, Riverside, California 92521 (C.R.).
          [16 ] Key Laboratory of Horticultural Plant Biology of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China (Q.X., X.D.).
          [17 ] Institut National de la Recherche Agronomique, UR1115 PSH, F-84914 Avignon, France (A.-L.F.); and.
          [18 ] CIRAD, Unité Mixte de Recherche AGAP, Station Institut National de la Recherche Agronomique, F-20230 San Giuliano, France (Y.F.).
          Article
          pp.16.01701
          10.1104/pp.16.01701
          5373055
          28196843
          8fd31b90-4065-483b-95ba-a38fe6d8ffb9
          History

          Comments

          Comment on this article