+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of yeast tRNA Um(44) 2'-O-methyltransferase (Trm44) and demonstration of a Trm44 role in sustaining levels of specific tRNA(Ser) species.

      RNA (New York, N.Y.)
      Amino Acid Sequence, Base Sequence, DNA Modification Methylases, chemistry, isolation & purification, metabolism, DNA Primers, Molecular Sequence Data, Open Reading Frames, RNA, Transfer, Ser, Saccharomyces cerevisiae, enzymology, genetics, Sequence Homology, Amino Acid

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          A characteristic feature of tRNAs is the numerous modifications found throughout their sequences, which are highly conserved and often have important roles. Um(44) is highly conserved among eukaryotic cytoplasmic tRNAs with a long variable loop and unique to tRNA(Ser) in yeast. We show here that the yeast ORF YPL030w (now named TRM44) encodes tRNA(Ser) Um(44) 2'-O-methyltransferase. Trm44 was identified by screening a yeast genomic library of affinity purified proteins for activity and verified by showing that a trm44-delta strain lacks 2'-O-methyltransferase activity and has undetectable levels of Um(44) in its tRNA(Ser) and by showing that Trm44 purified from Escherichia coli 2'-O-methylates U(44) of tRNA(Ser) in vitro. Trm44 is conserved among metazoans and fungi, consistent with the conservation of Um(44) in eukaryotic tRNAs, but surprisingly, Trm44 is not found in plants. Although trm44-delta mutants have no detectable growth defect, TRM44 is required for survival at 33 degrees C in a tan1-delta mutant strain, which lacks ac(4)C12 in tRNA(Ser) and tRNA(Leu). At nonpermissive temperature, a trm44-delta tan1-delta mutant strain has reduced levels of tRNA(Ser(CGA)) and tRNA(Ser(UGA)), but not other tRNA(Ser) or tRNA(Leu) species. The trm44-delta tan1-delta growth defect is suppressed by addition of multiple copies of tRNA(Ser(CGA)) and tRNA(Ser(UGA)), directly implicating these tRNA(Ser) species in this phenotype. The reduction of specific tRNA(Ser) species in a trm44-delta tan1-delta mutant underscores the importance of tRNA modifications in sustaining tRNA levels and further emphasizes that tRNAs undergo quality control.

          Related collections

          Author and article information


          Comment on this article