75
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence

      review-article
      1 , , 1
      Breast Cancer Research : BCR
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is now extensive evidence that mammographic density is an independent risk factor for breast cancer that is associated with large relative and attributable risks for the disease. The epidemiology of mammographic density, including the influences of age, parity and menopause, is consistent with it being a marker of susceptibility to breast cancer, in a manner similar to the concept of 'breast tissue age' described by the Pike model. Mammographic density reflects variations in the tissue composition of the breast. It is associated positively with collagen and epithelial and nonepithelial cells, and negatively with fat. Mammographic density is influenced by some hormones and growth factors as well as by several hormonal interventions. It is also associated with urinary levels of a mutagen. Twin studies have shown that most of the variation in mammographic density is accounted for by genetic factors. The hypothesis that we have developed from these observations postulates that the combined effects of cell proliferation (mitogenesis) and genetic damage to proliferating cells by mutagens (mutagenesis) may underlie the increased risk for breast cancer associated with extensive mammographic density. There is clearly a need for improved understanding of the specific factors that are involved in these processes and of the role played by the several breast tissue components that contribute to density. In particular, identification of the genes that are responsible for most of the variance in percentage density (and of their biological functions) is likely to provide insights into the biology of the breast, and may identify potential targets for preventative strategies in breast cancer.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies.

          Reproductive and hormonal factors are involved in the etiology of breast cancer, but there are only a few prospective studies on endogenous sex hormone levels and breast cancer risk. We reanalyzed the worldwide data from prospective studies to examine the relationship between the levels of endogenous sex hormones and breast cancer risk in postmenopausal women. We analyzed the individual data from nine prospective studies on 663 women who developed breast cancer and 1765 women who did not. None of the women was taking exogenous sex hormones when their blood was collected to determine hormone levels. The relative risks (RRs) for breast cancer associated with increasing hormone concentrations were estimated by conditional logistic regression on case-control sets matched within each study. Linear trends and heterogeneity of RRs were assessed by two-sided tests or chi-square tests, as appropriate. The risk for breast cancer increased statistically significantly with increasing concentrations of all sex hormones examined: total estradiol, free estradiol, non-sex hormone-binding globulin (SHBG)-bound estradiol (which comprises free and albumin-bound estradiol), estrone, estrone sulfate, androstenedione, dehydroepiandrosterone, dehydroepiandrosterone sulfate, and testosterone. The RRs for women with increasing quintiles of estradiol concentrations, relative to the lowest quintile, were 1.42 (95% confidence interval [CI] = 1.04 to 1.95), 1.21 (95% CI = 0.89 to 1.66), 1.80 (95% CI = 1.33 to 2.43), and 2.00 (95% CI = 1.47 to 2.71; P(trend)<.001); the RRs for women with increasing quintiles of free estradiol were 1.38 (95% CI = 0.94 to 2.03), 1.84 (95% CI = 1.24 to 2.74), 2.24 (95% CI = 1.53 to 3.27), and 2.58 (95% CI = 1.76 to 3.78; P(trend)<.001). The magnitudes of risk associated with the other estrogens and with the androgens were similar. SHBG was associated with a decrease in breast cancer risk (P(trend) =.041). The increases in risk associated with increased levels of all sex hormones remained after subjects who were diagnosed with breast cancer within 2 years of blood collection were excluded from the analysis. Levels of endogenous sex hormones are strongly associated with breast cancer risk in postmenopausal women.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Insulin-like growth factors and neoplasia.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circulating concentrations of insulin-like growth factor-I and risk of breast cancer.

              Insulin-like growth factor (IGF)-I, a mitogenic and antiapoptotic peptide, can affect the proliferation of breast epithelial cells, and is thought to have a role in breast cancer. We hypothesised that high circulating IGF-I concentrations would be associated with an increased risk of breast cancer. We carried out a nested case-control study within the prospective Nurses' Health Study cohort. Plasma concentrations of IGF-I and IGF binding protein 3 (IGFBP-3) were measured in blood samples collected in 1989-90. We identified 397 women who had a diagnosis of breast cancer after this date and 620 age-matched controls. IGF-I concentrations were compared by logistic regression with adjustment for other breast-cancer risk factors. There was no association between IGF-I concentrations and breast-cancer risk among the whole study group. In postmenopausal women there was no association between IGF-I concentrations and breast-cancer risk (top vs bottom quintile of IGF-I, relative risk 0.85 [95% CI 0.53-1.39]). The relative risk of breast cancer among premenopausal women by IGF-I concentration (top vs bottom tertile) was 2.33 (1.06-5.16; p for trend 0.08). Among premenopausal women less than 50 years old at the time of blood collection, the relative risk was 4.58 (1.75-12.0; p for trend 0.02). After further adjustment for plasma IGFBP-3 concentrations these relative risks were 2.88 and 7.28, respectively. A positive relation between circulating IGF-I concentration and risk of breast cancer was found among premenopausal but not postmenopausal women. Plasma IGF-I concentrations may be useful in the identification of women at high risk of breast cancer and in the development of risk reduction strategies. Additional larger studies of this association among premenopausal women are needed to provide more precise estimates of effect.
                Bookmark

                Author and article information

                Journal
                Breast Cancer Res
                Breast Cancer Research : BCR
                BioMed Central
                1465-5411
                1465-542X
                2008
                9 January 2008
                : 10
                : 1
                : 201
                Affiliations
                [1 ]Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Avenue, Toronto, Canada M5G 2M9
                Article
                bcr1831
                10.1186/bcr1831
                2374950
                18226174
                8fe0c21f-9bb8-41ac-9918-9753c561f320
                Copyright © 2008 BioMed Central Ltd
                History
                Categories
                Review

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article