25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinct origins of dura mater graft-associated Creutzfeldt-Jakob disease: past and future problems

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dura mater graft-associated Creutzfeldt-Jakob disease (dCJD) can be divided into two subgroups that exhibit distinct clinical and neuropathological features, with the majority represented by a non-plaque-type of dCJD (np-dCJD) and the minority by a plaque-type of dCJD (p-dCJD). The two distinct phenotypes of dCJD had been considered to be unrelated to the genotype (methionine, M or valine, V) at polymorphic codon 129 of the PRNP gene or type (type 1 or type 2) of abnormal isoform of prion protein (PrP Sc) in the brain, while these are major determinants of clinicopathological phenotypes of sporadic CJD (sCJD). The reason for the existence of two distinct subgroups in dCJD had remained elusive. Recent progress in research of the pathogenesis of dCJD has revealed that two distinct subgroups of dCJD are caused by infection with different PrP Sc strains from sCJD, i.e., np-dCJD caused by infection with sCJD-MM1/MV1, and p-dCJD caused by infection with sCJD-VV2 or -MV2. These studies have also revealed previously unrecognized problems as follows: (i) the numbers of p-dCJD patients may increase in the future, (ii) the potential risks of secondary infection from dCJD, particularly from p-dCJD, may be considerable, and (iii) the effectiveness of the current PrP Sc decontamination procedures against the PrP Sc from p-dCJD is uncertain. To prevent secondary infection from p-dCJD, the establishment of effective decontamination procedures is an urgent issue. In this review, we summarize the past and future problems surrounding dCJD.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects.

          Phenotypic heterogeneity in sporadic Creutzfeldt-Jakob disease (sCJD) is well documented, but there is not yet a systematic classification of the disease variants. In a previous study, we showed that the polymorphic codon 129 of the prion protein gene (PRNP), and two types of protease-resistant prion protein (PrP(Sc)) with distinct physicochemical properties, are major determinants of these variants. To define the full spectrum of variants, we have examined a series of 300 sCJD patients. Clinical features, PRNP genotype, and PrP(Sc) properties were determined in all subjects. In 187, we also studied neuropathological features and immunohistochemical pattern of PrP(Sc) deposition. Seventy percent of subjects showed the classic CJD phenotype, PrP(Sc) type 1, and at least one methionine allele at codon 129; 25% of cases displayed the ataxic and kuru-plaque variants, associated to PrP(Sc) type 2, and valine homozygosity or heterozygosity at codon 129, respectively. Two additional variants, which included a thalamic form of CJD and a phenotype characterized by prominent dementia and cortical pathology, were linked to PrP(Sc) type 2 and methionine homozygosity. Finally, a rare phenotype characterized by progressive dementia was linked to PrP(Sc) type 1 and valine homozygosity. The present data demonstrate the existence of six phenotypic variants of sCJD. The physicochemical properties of PrP(Sc) in conjunction with the PRNP codon 129 genotype largely determine this phenotypic variability, and allow a molecular classification of the disease variants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prospective 10-year surveillance of human prion diseases in Japan.

            We analysed the epidemiological data and clinical features of patients with prion diseases that had been registered by the Creutzfeldt-Jakob Disease Surveillance Committee, Japan, over the past 10 years, since 1999. We obtained information on 1685 Japanese patients suspected as having prion diseases and judged that 1222 patients had prion diseases, consisting of definite (n=180, 14.7%) and probable (n=1029, 84.2%) cases, except for dura mater graft-associated Creutzfeldt-Jakob disease which also included possible cases (n=13, 1.1%). They were classified into 922 (75.5%) with sporadic Creutzfeldt-Jakob disease, 216 (17.7%) with genetic prion diseases, 81 (6.6%) with acquired prion diseases, including 80 cases of dura mater graft-associated Creutzfeldt-Jakob disease and one case of variant Creutzfeldt-Jakob disease, and three cases of unclassified Creutzfeldt-Jakob disease (0.2%). The annual incidence rate of prion disease ranged from 0.65 in 1999 to 1.10 in 2006, with an average of 0.85, similar to European countries. Although methionine homozygosity at codon 129 polymorphism of the prion protein gene was reported to be very common (93%) in the general Japanese population, sporadic Creutzfeldt-Jakob disease in Japan was significantly associated with codon 129 homozygosity (97.5%), as reported in western countries. In sporadic Creutzfeldt-Jakob disease, MM1 type (Parchi's classification) is the most common, as in western countries. Among atypical sporadic Creutzfeldt-Jakob disease cases, the MM2 type appeared most common, probably related to the very high proportion of methionine allele in the Japanese population. As for iatrogenic Creutzfeldt-Jakob disease, only dura mater graft-associated Creutzfeldt-Jakob disease cases were reported in Japan and, combined with the data from previous surveillance systems, the total number of dura mater graft-associated Creutzfeldt-Jakob disease was 138, comprising the majority of worldwide dura mater graft-associated Creutzfeldt-Jakob disease patients. Regarding genetic prion diseases, the most common mutation of prion protein gene was V180I (41.2%), followed by P102L (18.1%), E200K (17.1%) and M232R (15.3%), and this distribution was quite different from that in Europe. In particular, V180I and M232R were quite rare mutations worldwide. Patients with V180I or M232R mutations rarely had a family history of prion diseases, indicating that a genetic test for sporadic cases is necessary to distinguish these from sporadic Creutzfeldt-Jakob disease. In conclusion, our prospective 10-year surveillance revealed a frequent occurrence of dura mater graft-associated Creutzfeldt-Jakob disease, and unique phenotypes of sporadic Creutzfeldt-Jakob disease and genetic prion diseases related to the characteristic distribution of prion protein gene mutations and polymorphisms in Japan, compared with those in western countries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenotypic variability of sporadic human prion disease and its molecular basis: past, present, and future.

              Human prion diseases are rare neurodegenerative disorders related to prion protein misfolding that can occur as sporadic, familial or acquired forms. In comparison to other more common neurodegenerative disorders, prion diseases show a wider range of phenotypic variation and largely transmit to experimental animals, a feature that led to the isolation and characterization of different strains of the transmissible agent or prion with distinct biological properties. Biochemically distinct PrP(Sc) types have been demonstrated which differ in their size after proteinase cleavage, glycosylation pattern, and possibly other features related to their conformation. These PrP(Sc) types, possibly enciphering the prion strains, together with the naturally occurring polymorphism at codon 129 in the prion protein gene have a major influence on the disease phenotype. In the sporadic form, the most common but perhaps least understood form of human prion disease, there are at least six major combinations of codon 129 genotype and prion protein isotype, which are significantly related to distinctive clinical-pathological subgroups of the disease. In this review, we provide an update on the current knowledge and classification of the disease subtypes of the sporadic human prion diseases as defined by molecular features and pathological changes. Furthermore, we discuss the molecular basis of phenotypic variability taking into account the results of recent transmission studies that shed light on the extent of prion strain variation in humans.
                Bookmark

                Author and article information

                Contributors
                Journal
                Acta Neuropathol Commun
                Acta Neuropathol Commun
                Acta Neuropathologica Communications
                BioMed Central
                2051-5960
                2014
                31 March 2014
                : 2
                : 32
                Affiliations
                [1 ]Department of Neurological Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
                [2 ]Influenza and Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan
                Article
                2051-5960-2-32
                10.1186/2051-5960-2-32
                3976164
                24685293
                8fe14193-6f39-4622-9d48-e1dee8acf85c
                Copyright © 2014 Kobayashi et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 24 March 2014
                : 24 March 2014
                Categories
                Review

                creutzfeldt-jakob disease,prion protein,dura mater grafts,humanized knock-in mouse

                Comments

                Comment on this article