75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Modeling a Snap-Action, Variable-Delay Switch Controlling Extrinsic Cell Death

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When exposed to tumor necrosis factor (TNF) or TNF-related apoptosis-inducing ligand (TRAIL), a closely related death ligand and investigational therapeutic, cells enter a protracted period of variable duration in which only upstream initiator caspases are active. A subsequent and sudden transition marks activation of the downstream effector caspases that rapidly dismantle the cell. Thus, extrinsic apoptosis is controlled by an unusual variable-delay, snap-action switch that enforces an unambiguous choice between life and death. To understand how the extrinsic apoptosis switch functions in quantitative terms, we constructed a mathematical model based on a mass-action representation of known reaction pathways. The model was trained against experimental data obtained by live-cell imaging, flow cytometry, and immunoblotting of cells perturbed by protein depletion and overexpression. The trained model accurately reproduces the behavior of normal and perturbed cells exposed to TRAIL, making it possible to study switching mechanisms in detail. Model analysis shows, and experiments confirm, that the duration of the delay prior to effector caspase activation is determined by initiator caspase-8 activity and the rates of other reactions lying immediately downstream of the TRAIL receptor. Sudden activation of effector caspases is achieved downstream by reactions involved in permeabilization of the mitochondrial membrane and relocalization of proteins such as Smac. We find that the pattern of interactions among Bcl-2 family members, the partitioning of Smac from its binding partner XIAP, and the mechanics of pore assembly are all critical for snap-action control.

          Author Summary

          In higher eukaryotes, tissue development and homeostasis involves a subtle balance between rates of cell birth and death. Cell death (apoptosis) is triggered by activation of caspases, specialized enzymes that digest essential cellular constituents and trigger degradation of genomic DNA. Under normal circumstances receptor-dependent cell death is very tightly repressed, but it is irreversibly induced upon receipt of an appropriate signal. Mutations that interfere with this all-or-none control contribute to developmental abnormalities, autoimmune disease, and cancer. The biochemical properties of most apoptotic proteins are quite well understood, but it is unclear how these proteins work together. By combining live-cell microscopy, genetic perturbation, and mathematical modeling, we seek quantitative insight into cell death with a focus on network dynamics and control. We find that cells vary dramatically in the time between receipt of an apoptotic signal and the commitment to death. This variability arises from cell-to-cell differences in the activities of receptor-proximal biochemical reactions. Rapid all-or-none progress from commitment to actual death is achieved downstream by pro-apoptotic proteins found in the mitochondrial membrane. Our work provides a quantitative picture of apoptosis that advances understanding of oncogenic mechanisms and should eventually assist in the development of pro-apoptotic cancer therapies.

          Abstract

          A combination of single-cell experiments and mathematical modeling reveals the mechanisms underlying all-or-none caspase activation during receptor-induced apoptosis.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade.

          We report here the purification of the third protein factor, Apaf-3, that participates in caspase-3 activation in vitro. Apaf-3 was identified as a member of the caspase family, caspase-9. Caspase-9 and Apaf-1 bind to each other via their respective NH2-terminal CED-3 homologous domains in the presence of cytochrome c and dATP, an event that leads to caspase-9 activation. Activated caspase-9 in turn cleaves and activates caspase-3. Depletion of caspase-9 from S-100 extracts diminished caspase-3 activation. Mutation of the active site of caspase-9 attenuated the activation of caspase-3 and cellular apoptotic response in vivo, indicating that caspase-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3.

            We report here the purification and cDNA cloning of Apaf-1, a novel 130 kd protein from HeLa cell cytosol that participates in the cytochrome c-dependent activation of caspase-3. The NH2-terminal 85 amino acids of Apaf-1 show 21% identity and 53% similarity to the NH2-terminal prodomain of the Caenorhabditis elegans caspase, CED-3. This is followed by 320 amino acids that show 22% identity and 48% similarity to CED-4, a protein that is believed to initiate apoptosis in C. elegans. The COOH-terminal region of Apaf-1 comprises multiple WD repeats, which are proposed to mediate protein-protein interactions. Cytochrome c binds to Apaf-1, an event that may trigger the activation of caspase-3, leading to apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two CD95 (APO-1/Fas) signaling pathways.

              We have identified two cell types, each using almost exclusively one of two different CD95 (APO-1/Fas) signaling pathways. In type I cells, caspase-8 was activated within seconds and caspase-3 within 30 min of receptor engagement, whereas in type II cells cleavage of both caspases was delayed for approximately 60 min. However, both type I and type II cells showed similar kinetics of CD95-mediated apoptosis and loss of mitochondrial transmembrane potential (DeltaPsim). Upon CD95 triggering, all mitochondrial apoptogenic activities were blocked by Bcl-2 or Bcl-xL overexpression in both cell types. However, in type II but not type I cells, overexpression of Bcl-2 or Bcl-xL blocked caspase-8 and caspase-3 activation as well as apoptosis. In type I cells, induction of apoptosis was accompanied by activation of large amounts of caspase-8 by the death-inducing signaling complex (DISC), whereas in type II cells DISC formation was strongly reduced and activation of caspase-8 and caspase-3 occurred following the loss of DeltaPsim. Overexpression of caspase-3 in the caspase-3-negative cell line MCF7-Fas, normally resistant to CD95-mediated apoptosis by overexpression of Bcl-xL, converted these cells into true type I cells in which apoptosis was no longer inhibited by Bcl-xL. In summary, in the presence of caspase-3 the amount of active caspase-8 generated at the DISC determines whether a mitochondria-independent apoptosis pathway is used (type I cells) or not (type II cells).
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                December 2008
                2 December 2008
                : 6
                : 12
                : e299
                Affiliations
                [1 ] Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
                [2 ] Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
                [3 ] Computational and Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
                Johns Hopkins University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: peter_sorger@ 123456hms.harvard.edu
                Article
                07-PLBI-RA-3412R3 plbi-06-12-01
                10.1371/journal.pbio.0060299
                2592357
                19053173
                8fe185dd-dc24-4a1c-9955-4c56313a29e0
                Copyright: © 2008 Albeck et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 October 2007
                : 20 October 2008
                Page count
                Pages: 1
                Categories
                Research Article
                Cell Biology
                Computational Biology
                Custom metadata
                Albeck JG, Burke JM, Spencer SL, Lauffenburger DA, Sorger PK (2008) Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol 6(12): e299. doi: 10.1371/journal.pbio.0060299

                Life sciences
                Life sciences

                Comments

                Comment on this article