13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2.

      The Journal of Biological Chemistry
      Base Sequence, Cell Line, Tumor, Ceramides, pharmacology, Cytosol, enzymology, Enzyme Activators, Fluorescent Antibody Technique, Humans, Phospholipases A, metabolism, Phospholipases A2, RNA Interference

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, we demonstrated that ceramide kinase, and its product, ceramide 1-phosphate (Cer-1-P), were mediators of arachidonic acid released in cells in response to interleukin-1beta and calcium ionophore (Pettus, B. J., Bielawska, A., Spiegel, S., Roddy, P., Hannun, Y. A., and Chalfant, C. E. (2003) J. Biol. Chem. 278, 38206-38213). In this study, we demonstrate that down-regulation of cytosolic phospholipase A(2) (cPLA(2)) using RNA interference technology abolished the ability of Cer-1-P to induce arachidonic acid release in A549 cells, demonstrating that cPLA(2) is the key phospholipase A(2) downstream of Cer-1-P. Treatment of A549 cells with Cer-1-P (2.5 microm) induced the translocation of full-length cPLA(2) from the cytosol to the Golgi apparatus/perinuclear regions, which are known sites of translocation in response to agonists. Cer-1-P also induced the translocation of the CaLB/C2 domain of cPLA(2) in the same manner, suggesting that this domain is responsive to Cer-1-P either directly or indirectly. In vitro studies were then conducted to distinguish these two possibilities. In vitro binding studies disclosed that Cer-1-P interacts directly with full-length cPLA(2) and with the CaLB domain in a calcium- and lipid-specific manner with a K(Ca) of 1.54 microm. Furthermore, Cer-1-P induced a calcium-dependent increase in cPLA(2) enzymatic activity as well as lowering the EC(50) of calcium for the enzyme from 191 to 31 nm. This study identifies Cer-1-P as an anionic lipid that translocates and directly activates cPLA(2), demonstrating a role for this bioactive lipid in the mediation of inflammatory responses.

          Related collections

          Author and article information

          Comments

          Comment on this article