Blog
About

20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Rejuvenating Strategies for Stem Cell-Based Therapies in Aging

      , ,

      Cell Stem Cell

      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 111

          • Record: found
          • Abstract: found
          • Article: not found

          Direct conversion of fibroblasts to functional neurons by defined factors

          Cellular differentiation and lineage commitment are considered robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. This raised the question of whether transcription factors could directly induce other defined somatic cell fates, and not only an undifferentiated state. We hypothesized that combinatorial expression of neural lineage-specific transcription factors could directly convert fibroblasts into neurons. Starting from a pool of nineteen candidate genes, we identified a combination of only three factors, Ascl1, Brn2, and Myt1l, that suffice to rapidly and efficiently convert mouse embryonic and postnatal fibroblasts into functional neurons in vitro. These induced neuronal (iN) cells express multiple neuron-specific proteins, generate action potentials, and form functional synapses. Generation of iN cells from non-neural lineages could have important implications for studies of neural development, neurological disease modeling, and regenerative medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas.

            Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation.

              A defining feature of inflammation is the accumulation of innate immune cells in the tissue that are thought to be recruited from the blood. We reveal that a distinct process exists in which tissue macrophages undergo rapid in situ proliferation in order to increase population density. This inflammatory mechanism occurred during T helper 2 (T(H)2)-related pathologies under the control of the archetypal T(H)2 cytokine interleukin-4 (IL-4) and was a fundamental component of T(H)2 inflammation because exogenous IL-4 was sufficient to drive accumulation of tissue macrophages through self-renewal. Thus, expansion of innate cells necessary for pathogen control or wound repair can occur without recruitment of potentially tissue-destructive inflammatory cells.
                Bookmark

                Author and article information

                Journal
                Cell Stem Cell
                Cell Stem Cell
                Elsevier BV
                19345909
                February 2017
                February 2017
                : 20
                : 2
                : 161-175
                Article
                10.1016/j.stem.2017.01.008
                © 2017

                Comments

                Comment on this article