37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thermodynamics of long-run economic innovation and growth

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This article derives prognostic expressions for the evolution of globally aggregated economic wealth, productivity, inflation, technological change, innovation and growth. The approach is to treat civilization as an open, non-equilibrium thermodynamic system that dissipates energy and diffuses matter in order to sustain existing circulations and to further its material growth. Appealing to a prior result that established a fixed relationship between a very general representation of global economic wealth and rates of global primary energy consumption, physically derived expressions for economic quantities follow. The analysis suggests that wealth can be expressed in terms of the length density of civilization's networks and the availability of energy resources. Rates of return on wealth are accelerated by energy reserve discovery, improvements to human and infrastructure longevity, and a more common culture, or a lowering of the amount of energy required to diffuse raw materials into civilization's bulk. According to a logistic equation, rates of return are slowed by past growth, and if rates of return approach zero, such "slowing down" makes civilization fragile with respect to externally imposed network decay. If past technological change has been especially rapid, then civilization is particularly vulnerable to newly unfavorable conditions that might force a switch into a mode of accelerating collapse.

          Related collections

          Author and article information

          Journal
          2013-06-15
          Article
          10.1002/2013EF000171
          1306.3554
          8fe7bff8-8d70-4dca-9849-f542641c2c22

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          31 pages, 6 figures
          q-fin.GN physics.soc-ph

          General physics,General economics
          General physics, General economics

          Comments

          Comment on this article