174
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Obesity is one of the major health burdens of the 21st century as it contributes to the growing prevalence of its related comorbidities, including insulin resistance and type 2 diabetes. Growing evidence suggests a critical role for overnutrition in the development of low-grade inflammation. Specifically, chronic inflammation in adipose tissue is considered a crucial risk factor for the development of insulin resistance and type 2 diabetes in obese individuals. The triggers for adipose tissue inflammation are still poorly defined. However, obesity-induced adipose tissue expansion provides a plethora of intrinsic signals (e.g., adipocyte death, hypoxia, and mechanical stress) capable of initiating the inflammatory response. Immune dysregulation in adipose tissue of obese subjects results in a chronic low-grade inflammation characterized by increased infiltration and activation of innate and adaptive immune cells. Macrophages are the most abundant innate immune cells infiltrating and accumulating into adipose tissue of obese individuals; they constitute up to 40% of all adipose tissue cells in obesity. In obesity, adipose tissue macrophages are polarized into pro-inflammatory M1 macrophages and secrete many pro-inflammatory cytokines capable of impairing insulin signaling, therefore promoting the progression of insulin resistance. Besides macrophages, many other immune cells (e.g., dendritic cells, mast cells, neutrophils, B cells, and T cells) reside in adipose tissue during obesity, playing a key role in the development of adipose tissue inflammation and insulin resistance. The association of obesity, adipose tissue inflammation, and metabolic diseases makes inflammatory pathways an appealing target for the treatment of obesity-related metabolic complications. In this review, we summarize the molecular mechanisms responsible for the obesity-induced adipose tissue inflammation and progression toward obesity-associated comorbidities and highlight the current therapeutic strategies.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: found
          • Article: not found

          Adapting to obesity with adipose tissue inflammation

          Adipose tissue inflammation is an adaptive response to overnutrition in the early stages of obesity, but later becomes maladaptive. Here, Reilly and Saltiel review the cellular and molecular mechanisms of obesity-induced inflammation in adipose tissue and discuss potential therapeutic approaches.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis

            Recent epidemiological and laboratory-based studies suggest that the anti-diabetic drug metformin prevents cancer progression. How metformin diminishes tumor growth is not fully understood. In this study, we report that in human cancer cells, metformin inhibits mitochondrial complex I (NADH dehydrogenase) activity and cellular respiration. Metformin inhibited cellular proliferation in the presence of glucose, but induced cell death upon glucose deprivation, indicating that cancer cells rely exclusively on glycolysis for survival in the presence of metformin. Metformin also reduced hypoxic activation of hypoxia-inducible factor 1 (HIF-1). All of these effects of metformin were reversed when the metformin-resistant Saccharomyces cerevisiae NADH dehydrogenase NDI1 was overexpressed. In vivo, the administration of metformin to mice inhibited the growth of control human cancer cells but not those expressing NDI1. Thus, we have demonstrated that metformin's inhibitory effects on cancer progression are cancer cell autonomous and depend on its ability to inhibit mitochondrial complex I. DOI: http://dx.doi.org/10.7554/eLife.02242.001
              • Record: found
              • Abstract: found
              • Article: not found

              The IL-1 family: regulators of immunity.

              Over recent years it has become increasingly clear that innate immune responses can shape the adaptive immune response. Among the most potent molecules of the innate immune system are the interleukin-1 (IL-1) family members. These evolutionarily ancient cytokines are made by and act on innate immune cells to influence their survival and function. In addition, they act directly on lymphocytes to reinforce certain adaptive immune responses. This Review provides an overview of both the long-established and more recently characterized members of the IL-1 family. In addition to their effects on immune cells, their involvement in human disease and disease models is discussed.

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                29 January 2020
                2019
                : 10
                : 1607
                Affiliations
                [1] 1Department of Translational Medicine, University of Naples Federico II , Naples, Italy
                [2] 2URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council , Naples, Italy
                [3] 3Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli , Caserta, Italy
                Author notes

                Edited by: Felice Rivellese, Queen Mary University of London, United Kingdom

                Reviewed by: Piero Ruscitti, University of L’Aquila, Italy; P. Trayhurn, University of Liverpool, United Kingdom

                *Correspondence: Francesco Beguinot, beguino@ 123456unina.it

                This article was submitted to Clinical and Translational Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2019.01607
                7000657
                32063863
                8fe82df6-99f3-446a-9177-8b462c6feb06
                Copyright © 2020 Zatterale, Longo, Naderi, Raciti, Desiderio, Miele and Beguinot.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 October 2019
                : 23 December 2019
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 268, Pages: 20, Words: 0
                Categories
                Physiology
                Review

                Anatomy & Physiology
                obesity,insulin resistance,diabetes,low-grade inflammation,adipose tissue inflammation,innate immune system,adaptive immunity,inflammatory triggers

                Comments

                Comment on this article

                Related Documents Log