12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Boiling and quenching heat transfer advancement by nanoscale surface modification

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.

          In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling--by heat transfer--the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanowires for enhanced boiling heat transfer.

            Boiling is a common mechanism for liquid-vapor phase transition and is widely exploited in power generation and refrigeration devices and systems. The efficacy of boiling heat transfer is characterized by two parameters: (a) heat transfer coefficient (HTC) or the thermal conductance; (b) the critical heat flux (CHF) limit that demarcates the transition from high HTC to very low HTC. While increasing the CHF and the HTC has significant impact on system-level energy efficiency, safety, and cost, their values for water and other heat transfer fluids have essentially remained unchanged for many decades. Here we report that the high surface tension forces offered by liquids in nanowire arrays made of Si and Cu can be exploited to increase both the CHF and the HTC by more than 100%.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On the Size Range of Active Nucleation Cavities on a Heating Surface

              Y. Y. Hsu (1962)
                Bookmark

                Author and article information

                Contributors
                jnchung@ufl.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                21 July 2017
                21 July 2017
                2017
                : 7
                : 6117
                Affiliations
                [1 ]ISNI 0000 0004 1936 8091, GRID grid.15276.37, Cryogenics Heat Transfer Laboratory, Department of Mechanical and Aerospace Engineering, , University of Florida, ; Gainesville, FL 32611-6300 USA
                [2 ]ISNI 0000 0004 1936 8091, GRID grid.15276.37, Nanostructured Interfaces Laboratory, Department of Chemical Engineering, , University of Florida, ; Gainesville, FL 32611-6005 USA
                Article
                6050
                10.1038/s41598-017-06050-0
                5522459
                28733647
                8ff13be5-a6b0-4cf0-b2c8-4f69c3e8d866
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 November 2016
                : 7 June 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article