+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beyond Trophic Factors: Exploiting the Intrinsic Regenerative Properties of Adult Neurons


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Injuries and diseases of the peripheral nervous system (PNS) are common but frequently irreversible. It is often but mistakenly assumed that peripheral neuron regeneration is robust without a need to be improved or supported. However, axonal lesions, especially those involving proximal nerves rarely recover fully and injuries generally are complicated by slow and incomplete regeneration. Strategies to enhance the intrinsic growth properties of reluctant adult neurons offer an alternative approach to consider during regeneration. Since axons rarely regrow without an intimately partnered Schwann cell (SC), approaches to enhance SC plasticity carry along benefits to their axon partners. Direct targeting of molecules that inhibit growth cone plasticity can inform important regenerative strategies. A newer approach, a focus of our laboratory, exploits tumor suppressor molecules that normally dampen unconstrained growth. However several are also prominently expressed in stable adult neurons. During regeneration their ongoing expression “brakes” growth, whereas their inhibition and knockdown may enhance regrowth. Examples have included phosphatase and tensin homolog deleted on chromosome ten (PTEN), a tumor suppressor that inhibits PI3K/pAkt signaling, Rb1, the protein involved in retinoblastoma development, and adenomatous polyposis coli (APC), a tumor suppressor that inhibits β-Catenin transcriptional signaling and its translocation to the nucleus. The identification of several new targets to manipulate the plasticity of regenerating adult peripheral neurons is exciting. How they fit with canonical regeneration strategies and their feasibility require additional work. Newer forms of nonviral siRNA delivery may be approaches for molecular manipulation to improve regeneration.

          Related collections

          Most cited references289

          • Record: found
          • Abstract: found
          • Article: not found

          Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway.

          The failure of axons to regenerate is a major obstacle for functional recovery after central nervous system (CNS) injury. Removing extracellular inhibitory molecules results in limited axon regeneration in vivo. To test for the role of intrinsic impediments to axon regrowth, we analyzed cell growth control genes using a virus-assisted in vivo conditional knockout approach. Deletion of PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian target of rapamycin (mTOR) pathway, in adult retinal ganglion cells (RGCs) promotes robust axon regeneration after optic nerve injury. In wild-type adult mice, the mTOR activity was suppressed and new protein synthesis was impaired in axotomized RGCs, which may contribute to the regeneration failure. Reactivating this pathway by conditional knockout of tuberous sclerosis complex 1, another negative regulator of the mTOR pathway, also leads to axon regeneration. Thus, our results suggest the manipulation of intrinsic growth control pathways as a therapeutic approach to promote axon regeneration after CNS injury.
            • Record: found
            • Abstract: found
            • Article: not found

            RB and cell cycle progression.

            The Rb protein is a tumor suppressor, which plays a pivotal role in the negative control of the cell cycle and in tumor progression. It has been shown that Rb protein (pRb) is responsible for a major G1 checkpoint, blocking S-phase entry and cell growth. The retinoblastoma family includes three members, Rb/p105, p107 and Rb2/p130, collectively referred to as 'pocket proteins'. The pRb protein represses gene transcription, required for transition from G1 to S phase, by directly binding to the transactivation domain of E2F and by binding to the promoter of these genes as a complex with E2F. pRb represses transcription also by remodeling chromatin structure through interaction with proteins such as hBRM, BRG1, HDAC1 and SUV39H1, which are involved in nucleosome remodeling, histone acetylation/deacetylation and methylation, respectively. Loss of pRb functions may induce cell cycle deregulation and so lead to a malignant phenotype. Gene inactivation of pRB through chromosomal mutations is one of the principal reasons for retinoblastoma tumor development. Functional inactivation of pRb by viral oncoprotein binding is also shown in many neoplasias such as cervical cancer, mesothelioma and AIDS-related Burkitt's lymphoma.
              • Record: found
              • Abstract: found
              • Article: not found

              Pten regulates neuronal arborization and social interaction in mice.

              CNS deletion of Pten in the mouse has revealed its roles in controlling cell size and number, thus providing compelling etiology for macrocephaly and Lhermitte-Duclos disease. PTEN mutations in individuals with autism spectrum disorders (ASD) have also been reported, although a causal link between PTEN and ASD remains unclear. In the present study, we deleted Pten in limited differentiated neuronal populations in the cerebral cortex and hippocampus of mice. Resulting mutant mice showed abnormal social interaction and exaggerated responses to sensory stimuli. We observed macrocephaly and neuronal hypertrophy, including hypertrophic and ectopic dendrites and axonal tracts with increased synapses. This abnormal morphology was associated with activation of the Akt/mTor/S6k pathway and inactivation of Gsk3beta. Thus, our data suggest that abnormal activation of the PI3K/AKT pathway in specific neuronal populations can underlie macrocephaly and behavioral abnormalities reminiscent of certain features of human ASD.

                Author and article information

                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                05 April 2019
                : 13
                : 128
                [1]Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta , Edmonton, AB, Canada
                Author notes

                Edited by: Giovanna Gambarotta, University of Turin, Italy

                Reviewed by: Valerio Magnaghi, University of Milan, Italy; Ertugrul Kilic, Istanbul Medipol University, Turkey

                *Correspondence: Douglas W. Zochodne zochodne@ 123456ualberta.ca
                Copyright © 2019 Duraikannu, Krishnan, Chandrasekhar and Zochodne.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                : 03 December 2018
                : 14 March 2019
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 333, Pages: 22, Words: 20120

                peripheral nerve,rhoa,netrin/unc5h,pten,rb1,brca1,apc/β-catenin
                peripheral nerve, rhoa, netrin/unc5h, pten, rb1, brca1, apc/β-catenin


                Comment on this article