35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chemopreventive Strategies for Inflammation-Related Carcinogenesis: Current Status and Future Direction

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A sustained and chronically-inflamed environment is characterized by the presence of heterogeneous inflammatory cellular components, including neutrophils, macrophages, lymphocytes and fibroblasts. These infiltrated cells produce growth stimulating mediators (inflammatory cytokines and growth factors), chemotactic factors (chemokines) and genotoxic substances (reactive oxygen species and nitrogen oxide) and induce DNA damage and methylation. Therefore, chronic inflammation serves as an intrinsic niche for carcinogenesis and tumor progression. In this article, we summarize the up-to-date findings regarding definitive/possible causes and mechanisms of inflammation-related carcinogenesis derived from experimental and clinical studies. We also propose 10 strategies, as well as candidate agents for the prevention of inflammation-related carcinogenesis.

          Related collections

          Most cited references257

          • Record: found
          • Abstract: found
          • Article: not found

          Origin and physiological roles of inflammation.

          Inflammation underlies a wide variety of physiological and pathological processes. Although the pathological aspects of many types of inflammation are well appreciated, their physiological functions are mostly unknown. The classic instigators of inflammation - infection and tissue injury - are at one end of a large range of adverse conditions that induce inflammation, and they trigger the recruitment of leukocytes and plasma proteins to the affected tissue site. Tissue stress or malfunction similarly induces an adaptive response, which is referred to here as para-inflammation. This response relies mainly on tissue-resident macrophages and is intermediate between the basal homeostatic state and a classic inflammatory response. Para-inflammation is probably responsible for the chronic inflammatory conditions that are associated with modern human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinicopathologic study of dextran sulfate sodium experimental murine colitis.

            We undertook this study in order to fully characterize the clinical and histopathology features of the dextran sulfate sodium (DSS) model of experimental murine colitis and to discover the earliest histopathologic changes that lead to colitis. Acute colitis was induced in Swiss-Webster mice by 7 days of oral DSS with animals sacrificed daily. Chronic colitis was induced by: (a) 7 days of oral DSS followed by 7 days of H2O (for 1, 2, and 3 cycles) and (b) 7 days of oral DSS followed by 14 and 21 days of H2O. In each experimental group, the entire colons were examined histologically and correlated with clinical symptoms. Acute clinical symptoms (diarrhea and/or grossly bloody stool) were associated with the presence of erosions and inflammation. More importantly, the earliest histologic changes which predated clinical colitis was loss of the basal one-third of the crypt (day 3), which progressed with time to loss of the entire crypt resulting in erosions on day 5. The earliest changes were very focal and not associated with inflammation. Inflammation was a secondary phenomena and only became significant after erosions appeared. Animals treated with only 7 days of DSS followed by 14 and 21 days of H2O developed a chronic colitis with the following histologic features: areas of activity (erosions and inflammation), inactivity, crypt distortion, florid epithelial proliferation and possible dysplasia. These changes were similar to animals given 3 cycles of DSS. The clinical disease activity index correlated significantly with pathologic changes in both the acute and chronic phases of the disease. The mechanism of DSS colitis is presently unknown. However, the finding of crypt loss without proceeding or accompanying inflammation suggests that the initial insult is at the level of the epithelial cell with inflammation being a secondary phenomena. This may be a good model to study how early mucosal changes lead to inflammation and the biology of the colonic enterocyte. Chronic colitis induced after only 7 days of DSS may serve as a useful model to study the effects of pharmacologic agents in human inflammatory disease and mechanisms of perpetuation of inflammation. Finally, we believe that this model has the potential to study the dysplasia cancer sequence in inflammatory disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation in prostate carcinogenesis.

              About 20% of all human cancers are caused by chronic infection or chronic inflammatory states. Recently, a new hypothesis has been proposed for prostate carcinogenesis. It proposes that exposure to environmental factors such as infectious agents and dietary carcinogens, and hormonal imbalances lead to injury of the prostate and to the development of chronic inflammation and regenerative 'risk factor' lesions, referred to as proliferative inflammatory atrophy (PIA). By developing new experimental animal models coupled with classical epidemiological studies, genetic epidemiological studies and molecular pathological approaches, we should be able to determine whether prostate cancer is driven by inflammation, and if so, to develop new strategies to prevent the disease.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                19 April 2017
                April 2017
                : 18
                : 4
                : 867
                Affiliations
                [1 ]Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan; kanda@ 123456med.tottori-u.ac.jp (Y.K.); osamitsu@ 123456med.tottori-u.ac.jp (M.O.)
                [2 ]Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan
                Author notes
                [* ]Correspondence: fuokada@ 123456med.tottori-u.ac.jp ; Tel.: +81-859-38-6241; Fax: +81-859-38-6240
                Article
                ijms-18-00867
                10.3390/ijms18040867
                5412448
                28422073
                8ff5092d-4a04-4087-ae08-125630366469
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 March 2017
                : 17 April 2017
                Categories
                Review

                Molecular biology
                inflammation-related carcinogenesis,chronic inflammation,chemoprevention
                Molecular biology
                inflammation-related carcinogenesis, chronic inflammation, chemoprevention

                Comments

                Comment on this article