2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Food, Eating, and the Gastrointestinal Tract

      1 , 2 , 3 , 4 , 2 , 3 , 4 , *

      Nutrients

      MDPI

      food ingestion, digestion, satiety, digestive well-being

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Food ingestion induces a metered response of the digestive system. Initially, the upper digestive system reacts to process and extract meal substrates. Later, meal residues not absorbed in the small bowel, pass into the colon and activate the metabolism of resident microbiota. Food consumption also induces sensations that arise before ingestion (e.g., anticipatory reward), during ingestion (e.g., gustation), and most importantly, after the meal (i.e., the postprandial experience). The postprandial experience involves homeostatic sensations (satiety, fullness) with a hedonic dimension (digestive well-being, mood). The factors that determine the postprandial experience are poorly understood, despite their potential role in personalized diets and healthy eating habits. Current data suggest that the characteristics of the meal (amount, palatability, composition), the activity of the digestive system (suited processing), and the receptivity of the eater (influenced by multiple conditioning factors) may be important in this context.

          Related collections

          Most cited references 67

          • Record: found
          • Abstract: found
          • Article: not found

          'Liking' and 'wanting' food rewards: brain substrates and roles in eating disorders.

          What brain reward systems mediate motivational 'wanting' and hedonic 'liking' for food rewards? And what roles do those systems play in eating disorders? This article surveys recent findings regarding brain mechanisms of hedonic 'liking', such as the existence of cubic-millimeter hedonic hotspots in nucleus accumbens and ventral pallidum for opioid amplification of sensory pleasure. It also considers brain 'wanting' or incentive salience systems important to appetite, such as mesolimbic dopamine systems and opioid motivation circuits that extend beyond the hedonic hotspots. Finally, it considers some potential ways in which 'wanting' and 'liking' might relate to eating disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The cell biology of taste

            Taste buds are aggregates of 50–100 polarized neuroepithelial cells that detect nutrients and other compounds. Combined analyses of gene expression and cellular function reveal an elegant cellular organization within the taste bud. This review discusses the functional classes of taste cells, their cell biology, and current thinking on how taste information is transmitted to the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways.

              Increases in fructose consumption have paralleled the increasing prevalence of obesity, and high-fructose diets are thought to promote weight gain and insulin resistance. Fructose ingestion produces smaller increases in circulating satiety hormones compared with glucose ingestion, and central administration of fructose provokes feeding in rodents, whereas centrally administered glucose promotes satiety. To study neurophysiological factors that might underlie associations between fructose consumption and weight gain. Twenty healthy adult volunteers underwent 2 magnetic resonance imaging sessions at Yale University in conjunction with fructose or glucose drink ingestion in a blinded, random-order, crossover design. Relative changes in hypothalamic regional cerebral blood flow (CBF) after glucose or fructose ingestion. Secondary outcomes included whole-brain analyses to explore regional CBF changes, functional connectivity analysis to investigate correlations between the hypothalamus and other brain region responses, and hormone responses to fructose and glucose ingestion. There was a significantly greater reduction in hypothalamic CBF after glucose vs fructose ingestion (-5.45 vs 2.84 mL/g per minute, respectively; mean difference, 8.3 mL/g per minute [95% CI of mean difference, 1.87-14.70]; P = .01). Glucose ingestion (compared with baseline) increased functional connectivity between the hypothalamus and the thalamus and striatum. Fructose increased connectivity between the hypothalamus and thalamus but not the striatum. Regional CBF within the hypothalamus, thalamus, insula, anterior cingulate, and striatum (appetite and reward regions) was reduced after glucose ingestion compared with baseline (P < .05 significance threshold, family-wise error [FWE] whole-brain corrected). In contrast, fructose reduced regional CBF in the thalamus, hippocampus, posterior cingulate cortex, fusiform, and visual cortex (P < .05 significance threshold, FWE whole-brain corrected). In whole-brain voxel-level analyses, there were no significant differences between direct comparisons of fructose vs glucose sessions following correction for multiple comparisons. Fructose vs glucose ingestion resulted in lower peak levels of serum glucose (mean difference, 41.0 mg/dL [95% CI, 27.7-54.5]; P < .001), insulin (mean difference, 49.6 μU/mL [95% CI, 38.2-61.1]; P < .001), and glucagon-like polypeptide 1 (mean difference, 2.1 pmol/L [95% CI, 0.9-3.2]; P = .01). In a series of exploratory analyses, consumption of fructose compared with glucose resulted in a distinct pattern of regional CBF and a smaller increase in systemic glucose, insulin, and glucagon-like polypeptide 1 levels.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                02 April 2020
                April 2020
                : 12
                : 4
                Affiliations
                [1 ]Digestive Diseases Institute, Shaare Zedek Medical Center, Hebrew University of Jerusalem, 9103102 Jerusalem, Israel; danlivo@ 123456yahoo.com
                [2 ]Digestive System Research Unit, University Hospital Vall d’Hebron, Passeig de la Vall d’Hebron 119, 08035 Barcelona, Spain; teodora.pribic@ 123456gmail.com
                [3 ]Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
                [4 ]Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
                Author notes
                [* ]Correspondence: azpiroz.fernando@ 123456gmail.com ; Tel.: +34-93-274-6222; Fax: +34-93-489-4456
                Article
                nutrients-12-00986
                10.3390/nu12040986
                7231022
                32252402
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Nutrition & Dietetics

                food ingestion, digestion, satiety, digestive well-being

                Comments

                Comment on this article