10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From regenerative strategies to pharmacological approaches: can we fine-tune treatment for Parkinson's disease?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson's disease is the second most prevalent neurodegenerative disorder worldwide. Clinically, it is characterized by severe motor complications caused by progressive degeneration of dopaminergic neurons. Current treatment is focused on mitigating the symptoms through the administration of levodopa, rather than on preventing dopaminergic neuronal damage. Therefore, the use and development of neuroprotective/disease-modifying strategies is an absolute need that can lead to promising gains on translational research of Parkinson's disease. For instance, N-acetylcysteine, a natural compound with strong antioxidant effects, has been shown to modulate oxidative stress, preventing dopamine-induced cell death. Despite the evidence of neuroprotective and modulatory effects of this drug, as far as we know, it does not induce per se any regenerative process. Therefore, it would be of interest to combine the latter with innovative therapies that induce dopaminergic neurons repair or even differentiation, as stem cell-based strategies. Stem cells secretome has been proposed as a promising therapeutic approach for Parkinson's disease, given its ability to modulate cell viability/preservation of dopaminergic neurons. Such approach represents a shift in the paradigm, showing that cell-transplantation free therapies based on the use of stem cells secretome may represent a potential alternative for regenerative medicine of Parkinson's disease. Thus, in this review, we address the current understanding of the potential combination of stem cell free-based strategies and neuroprotective/disease-modifying strategies as a new paradigm for the treatment of central nervous system neurodegenerative diseases, like Parkinson's disease.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Current understanding of the molecular mechanisms in Parkinson's disease: Targets for potential treatments

          Gradual degeneration and loss of dopaminergic neurons in the substantia nigra, pars compacta and subsequent reduction of dopamine levels in striatum are associated with motor deficits that characterize Parkinson’s disease (PD). In addition, half of the PD patients also exhibit frontostriatal-mediated executive dysfunction, including deficits in attention, short-term working memory, speed of mental processing, and impulsivity. The most commonly used treatments for PD are only partially or transiently effective and are available or applicable to a minority of patients. Because, these therapies neither restore the lost or degenerated dopaminergic neurons, nor prevent or delay the disease progression, the need for more effective therapeutics is critical. In this review, we provide a comprehensive overview of the current understanding of the molecular signaling pathways involved in PD, particularly within the context of how genetic and environmental factors contribute to the initiation and progression of this disease. The involvement of molecular chaperones, autophagy-lysosomal pathways, and proteasome systems in PD are also highlighted. In addition, emerging therapies, including pharmacological manipulations, surgical procedures, stem cell transplantation, gene therapy, as well as complementary, supportive and rehabilitation therapies to prevent or delay the progression of this complex disease are reviewed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Impact of the Secretome of Human Mesenchymal Stem Cells on Brain Structure and Animal Behavior in a Rat Model of Parkinson's Disease

            Abstract Research in the last decade strongly suggests that mesenchymal stem cell (MSC)‐mediated therapeutic benefits are mainly due to their secretome, which has been proposed as a possible therapeutic tool for the treatment of Parkinson's disease (PD). Indeed, it has been shown that the MSC secretome increases neurogenesis and cell survival, and has numerous neuroprotective actions under different conditions. Additionally, using dynamic culturing conditions (through computer‐controlled bioreactors) can further modulate the MSC secretome, thereby generating a more potent neurotrophic factor cocktail (i.e., conditioned medium). In this study, we have characterized the MSC secretome by proteomic‐based analysis, investigating its therapeutic effects on the physiological recovery of a 6‐hydroxidopamine (6‐OHDA) PD rat model. For this purpose, we injected MSC secretome into the substantia nigra (SNc) and striatum (STR), characterizing the behavioral performance and determining histological parameters for injected animals versus untreated groups. We observed that the secretome potentiated the increase of dopaminergic neurons (i.e., tyrosine hydroxylase‐positive cells) and neuronal terminals in the SNc and STR, respectively, thereby supporting the recovery observed in the Parkinsonian rats’ motor performance outcomes (assessed by rotarod and staircase tests). Finally, proteomic characterization of the MSC secretome (through combined mass spectrometry analysis and Bioplex assays) revealed the presence of important neuroregulatory molecules, namely cystatin C, glia‐derived nexin, galectin‐1, pigment epithelium‐derived factor, vascular endothelial growth factor, brain‐derived neurotrophic factor, interleukin‐6, and glial cell line‐derived neurotrophic factor. Overall, we concluded that the use of human MSC secretome alone was able to partially revert the motor phenotype and the neuronal structure of 6‐OHDA PD animals. This indicates that the human MSC secretome could represent a novel therapeutic for the treatment of PD. Stem Cells Translational Medicine 2017;6:634–646
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              N-Acetyl Cysteine May Support Dopamine Neurons in Parkinson's Disease: Preliminary Clinical and Cell Line Data

              Backgound The purpose of this study was to assess the biological and clinical effects of n-acetyl-cysteine (NAC) in Parkinson’s disease (PD). Methods The overarching goal of this pilot study was to generate additional data about potentially protective properties of NAC in PD, using an in vitro and in vivo approach. In preparation for the clinical study we performed a cell tissue culture study with human embryonic stem cell (hESC)-derived midbrain dopamine (mDA) neurons that were treated with rotenone as a model for PD. The primary outcome in the cell tissue cultures was the number of cells that survived the insult with the neurotoxin rotenone. In the clinical study, patients continued their standard of care and were randomized to receive either daily NAC or were a waitlist control. Patients were evaluated before and after 3 months of receiving the NAC with DaTscan to measure dopamine transporter (DAT) binding and the Unified Parkinson’s Disease Rating Scale (UPDRS) to measure clinical symptoms. Results The cell line study showed that NAC exposure resulted in significantly more mDA neurons surviving after exposure to rotenone compared to no NAC, consistent with the protective effects of NAC previously observed. The clinical study showed significantly increased DAT binding in the caudate and putamen (mean increase ranging from 4.4% to 7.8%; p<0.05 for all values) in the PD group treated with NAC, and no measurable changes in the control group. UPDRS scores were also significantly improved in the NAC group (mean improvement of 12.9%, p = 0.01). Conclusions The results of this preliminary study demonstrate for the first time a potential direct effect of NAC on the dopamine system in PD patients, and this observation may be associated with positive clinical effects. A large-scale clinical trial to test the therapeutic efficacy of NAC in this population and to better elucidate the mechanism of action is warranted. Trial Registration ClinicalTrials.gov NCT02445651
                Bookmark

                Author and article information

                Journal
                Neural Regen Res
                Neural Regen Res
                NRR
                Neural Regeneration Research
                Wolters Kluwer - Medknow (India )
                1673-5374
                1876-7958
                May 2022
                17 September 2021
                : 17
                : 5
                : 933-936
                Affiliations
                [1 ]Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
                [2 ]ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
                Author notes
                [* ] Correspondence to: Fábio G. Teixeira, fabioteixeira@ 123456med.uminho.pt

                Author contributions: Conceptualization: RCS and HSD. Writing – original draft: RCS and HSD. Writing – review & editing: AJS, FGT. Funding acquisition: FGT. All authors approved the final version of the manuscript.

                Author information
                https://orcid.org/0000-0003-1461-9077
                Article
                NRR-17-933
                10.4103/1673-5374.324827
                8552835
                34558504
                90024eac-3948-4e6a-a324-8c8c1a4997e4
                Copyright: © Neural Regeneration Research

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 22 December 2020
                : 21 January 2021
                : 28 May 2021
                Categories
                Review

                disease-modifying strategies,mesenchymal stem cells,n-acetylcysteine,neuroprotection,parkinson's disease,stem cells secretome

                Comments

                Comment on this article