8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biogenic nanosilver synthesized in Metarhizium robertsii waste mycelium extract – As a modulator of Candida albicans morphogenesis, membrane lipidome and biofilm

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to low efficacy of classic antimicrobial drugs, finding new active preparations attracts much attention. In this study an innovative, cost-effective and environmentally friendly method was applied to produce silver nanoparticles (AgNPs) using filamentous fungi Metarhizium robertsii biomass waste. It was shown that these NPs possess prominent antifungal effects against C. albicans, C. glabrata and C. parapsilosis reference strains. Further detailed studies were performed on C. albicans ATCC 90028. AgNPs kill curve (CFU method and esterase-mediated reduction of fluorescein diacetate); fractionally inhibitory concentration index (FICI) with fluconazole (FLC); effect on fungal cell membrane permeability (propidium iodide (PI) staining), membrane lipids profile (HPLC-MS), yeast morphotypes and intracellular reactive oxygen species level (H 2DCFDA probe) were investigated. Anti-adhesive and anti-biofilm properties of AgNPs (alone and in combination with FLC) were also tested. Biosafety of AgNPs use was assessed in vitro in cytotoxicity tests against L929 fibroblasts, pulmonary epithelial A549 cell line, and red blood cells. Significant reduction in the viability of yeast cells treated with AgNPs was shown within 6 h. The proportion of C. albicans PI-positive cells increased in a dose and time-dependent manner. Changes in the qualitative and quantitative profile of cell membrane lipids, including significant decline in the quantity of most phospholipid species containing C18:2 and an increase in the amount of phospholipids containing C18:1 acyl species were observed after yeast exposure to AgNPs. CLSM images showed an enhancement in ROS intracellular accumulation in C. albicans treated with biogenic nanosilver. C. albicans transformation from yeast to hyphal forms was also reduced. AgNPs decreased adhesion of yeast to abiotic surfaces, as well as acted synergistically with FLC against sessile population. At fungicidal and fungistatic concentrations, they were non-toxic to mammalian cells. Obtained results confirm suitability of our “green synthesis” method to produce AgNPs with therapeutic potential against fungal infections.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis.

          A sensitive approach based on electrospray ionization tandem mass spectrometry has been employed to profile membrane lipid molecular species in Arabidopsis undergoing cold and freezing stresses. Freezing at a sublethal temperature induced a decline in many molecular species of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) but induced an increase in phosphatidic acid (PA) and lysophospholipids. To probe the metabolic steps generating these changes, lipids of Arabidopsis deficient in the most abundant phospholipase D, PLD alpha, were analyzed. The PC content dropped only half as much, and PA levels rose only half as high in the PLD alpha-deficient plants as in wild-type plants. In contrast, neither PE nor PG levels decreased significantly more in wild-type plants than in PLD alpha-deficient plants. These data suggest that PC, rather than PE and PG, is the major in vivo substrate of PLD alpha. The action of PLD alpha during freezing is of special interest because Arabidopsis plants that are deficient in PLD alpha have improved tolerance to freezing. The greater loss of PC and increase in PA in wild-type plants as compared with PLD alpha-deficient plants may be responsible for destabilizing membrane bilayer structure, resulting in a greater propensity toward membrane fusion and cell death in wild-type plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Natural Antibiotic Resistance and Contamination by Antibiotic Resistance Determinants: The Two Ages in the Evolution of Resistance to Antimicrobials

            The study of antibiotic resistance has been historically concentrated on the analysis of bacterial pathogens and on the consequences of acquiring resistance for human health. The development of antibiotic resistance is of course extremely relevant from the clinical point of view, because it can compromise the treatment of infectious diseases as well as other advanced therapeutic procedures as transplantation or anticancer therapy that involve immunosuppression and thus require robust anti-infective preventive therapies. Nevertheless, the studies on antibiotic resistance should not be confined to clinical-associated ecosystems. It was evident soon after introducing antibiotics for human therapy, that bacteria were able to develop resistance, not just as the consequence of mutations in the targets of antibiotics, but by acquiring genes conferring resistance to antimicrobials (Abraham and Chain, 1940). Since those genes were not present before in the human bacterial pathogens, the only suitable source for them was the environmental microbiota, and indeed the presence of R-factors (resistance plasmids) in pristine environments without any record of contact with antibiotics was described in the first studies of antibiotic resistance in the field (Gardner et al., 1969). Given that the origin of antibiotic resistance is the environmental microbiota, it would be necessary to study resistance in natural, non-clinical habitats in order to fully understand the cycle of acquisition of resistance by human pathogens. However, until recently the studies on antibiotic resistance in natural ecosystems have been fragmentary. The availability of metagenomic tools as well as high-throughput sequencing techniques is allowing describing in depth the presence of resistance genes in different ecosystems. Indeed, the use of functional genomic and metagenomic techniques has served to show that natural ecosystems, including not just soils but human gut as well, contain a large number of elements that, upon transfer to a new host, can confer resistance to any type of antimicrobial (D'Costa et al., 2006; Sommer et al., 2009). These include natural antibiotics, which are produced by the environmental microbiota, and synthetic antimicrobials, as quinolones. One important question from an evolutionary point of view is the function of these resistance genes in their natural environmental hosts (Davies and Davies, 2010). Whereas for naturally produced antibiotics a protective role for resistance genes in the producers organisms (or those coexisting with producers Laskaris et al., 2010) might be foreseen (Benveniste and Davies, 1973), this explanation is not suitable for synthetic antibiotics as quinolones. Indeed, it has been described that the origin of the quinolone resistance gene QnrA, which is now widespread in plasmids present in human pathogens is the environmental non-antibiotic producer Shewanella algae (Poirel et al., 2005). This means that a gene that confers resistance in a human pathogen does not necessary play the same role in its original host (Martinez et al., 2009a). The finding that several proteins, involved in basic processes of the bacterial physiology, contribute to intrinsic resistance to antibiotics (Fajardo et al., 2008; Laskaris et al., 2010; Linares et al., 2010), further supports the concept that resistance genes, acquired through horizontal gene transfer by human pathogens, might have evolved in their original host to play a different role than resisting the activity of antimicrobials in natural ecosystems. We can thus distinguish two ages in the evolution of antibiotic resistance genes. For billions of years (until the use of antibiotics by humans), these genes have been usually chromosomally encoded and had evolved for different purposes. Some of them, as those found in antibiotic producers, likely evolved for detoxifying the original host from the antibiotic it produces, although a role in the biosynthesis of the antibiotic itself has been proposed as well for some of them (Benveniste and Davies, 1973; Doyle et al., 1991). Others, as beta-lactamases might be involved in the biosynthesis of the cell wall (Jacobs et al., 1994; Massova and Mobashery, 1998), whereas others as multidrug efflux pumps might serve for different purposes including the trafficking of signaling molecules, detoxification of metabolic intermediates, or extrusion of plant-produced compounds among others (Martinez et al., 2009b). Like in the case of antibiotics, which do not necessarily have an inhibitory function at the concentrations in which they are present in natural ecosystems (Linares et al., 2006; Yim et al., 2007; Fajardo and Martinez, 2008), the fact that a plasmid-encoded gene produces resistance to antibiotics upon its expression in a new host, is not an unequivocal prove that it confers resistance as well in its original host. This reflection serves to show the relevance of the second age in the evolution of antibiotic resistance determinants. Once a gene is introduced in a new host in which it lacks its original biochemical and genetic context, its function is limited to antibiotic resistance (Baquero et al., 2009). This change of function without changing the sequence of the gene itself, has been named as exaptation (Gould and Vrba, 1982), and is the consequence of the strong selective pressure exerted by antibiotics in the last decades from the time they were introduced for therapy. Two important aspects are emerging from the studies of natural resistome. First, the environmental microbiota contains a much larger number of resistance genes than those seen to be acquired by bacterial pathogens (Wright, 2007; Davies and Davies, 2010). Furthermore, different ecosystems contain different resistance genes, which means that we are still far away to have a consistent estimation on the number of potential resistance genes present in natural ecosystems. Finally, the origin of most resistance genes currently found in transferrable elements is still ignored, despite genes (and genetic structures) belonging to the same families are regularly found in different ecosystems, including deep terrestrial subsurface (Brown and Balkwill, 2009), ice (Miteva et al., 2004), and even the permafrost (D'Costa et al., 2011), which have not been in contact with human contaminants. Second, those genes present in mobile elements in human bacterial pathogens can be found nearly everywhere, including pristine ecosystems or wild animals not supposed to be in contact with antibiotics (Martinez, 2009). This indicates that pollution with antibiotic resistance genes is widely spread and that resistance genes can persist even in the absence of a positive selection pressure. The analysis of historical soil archives has shown a consistent increase on the presence of antibiotic resistance genes since 1940 (Knapp et al., 2010), which is a clear prove of the contamination by antibiotic resistance elements of natural ecosystems and the resilience of those elements for their elimination. In this situation, which type of studies are needed to analyze in depth the role that natural ecosystems may have on the development of resistance in human bacterial pathogens? In my opinion, these studies have two faces (Martinez, 2008). One consists on the analysis of the genes already present in bacterial pathogens. In other words, we will study mainly contamination by antibiotic resistance determinants and how this contamination might increase the risks for the dissemination of those elements (Martinez, 2009). These studies might serve to define reservoirs, elements for enrichment and dissemination of resistance (as wild birds Simoes et al., 2010) or hotspots for the transfer of resistance as waste-water treatment plants (Baquero et al., 2008). For instance, a recent study has shown that soil composition and in particular the presence of heavy metals might enrich for the presence of antibiotic resistance genes in natural ecosystems (Knapp et al., 2011). The other type of studies consists on the analysis, using functional assays, of novel resistance genes in different ecosystems (D'Costa et al., 2006, 2011; Sommer et al., 2009). These studies are useful for defining novel mechanisms of resistance, but making risks assessments on whether those novel antibiotic resistance genes will be transferred to new hosts is likely unsuitable (Martinez et al., 2007). On the other hand tracking the source of currently known resistance gene has demonstrated to be a very difficult task. We have to be extremely careful for assigning the origin of resistance determinants. Only when the genes are nearly identical (as QnrA) and the gene is present in several strains of the original host, with the same synteny and without any sign of a recent acquisition event, we can firmly establish this host being the origin. The report of genes that are highly similar (even above 90%) to antibiotic resistance genes demonstrate their belonging to the same phylogenetic group, not that one is the origin of the other. Does it mean that we will be unable of tracking the source of resistance genes and to propose from this information valuable strategies for reducing antibiotic resistance? I do not believe that. It has been already determined that QnrA was originated in S. algae (Poirel et al., 2005) and that chromosomally encoded qnr genes are mainly present in water-dwelling bacteria (Sanchez et al., 2008). This suggests that the source of transferrable quinolone resistance is the water microbiota and puts a focus on the effect that the use of quinolones in aquaculture might have had for the emergence and dissemination of these resistance elements (Cabello, 2006). The study on antibiotic resistance in natural ecosystems and its role on the maintenance and spread of clinically relevant resistance determinants is still in its infancy. It is surprising that large efforts have been used to study the risks for the dissemination of resistance that may have the release of genetic modified organisms containing resistance genes in their chromosomes, whereas the study of the effect of the discharge of human wastes, which contain bacterial pathogens harboring the resistance genes that have demonstrated to be really relevant, in the elements that are important for their dissemination has received few attention if any. Studies in this new field are needed in order to understand the mechanisms involved in the emergence, spread, maintenance, and evolution of antibiotic resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles

              Nanoparticles (NPs) possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS). The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: MethodologyRole: Writing – original draft
                Role: Data curationRole: InvestigationRole: Methodology
                Role: Data curationRole: InvestigationRole: MethodologyRole: Writing – original draft
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: VisualizationRole: Writing – original draft
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                19 March 2018
                2018
                : 13
                : 3
                : e0194254
                Affiliations
                [1 ] Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
                [2 ] Laboratory of Microbiological and Technical Services, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
                [3 ] Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
                VIT University, INDIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                ‡ These authors also contributed equally to this work.

                Author information
                http://orcid.org/0000-0001-8465-659X
                Article
                PONE-D-17-42270
                10.1371/journal.pone.0194254
                5858827
                29554119
                90099d1e-0a5a-4c4e-92d8-b3d248561642
                © 2018 Różalska et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 December 2017
                : 27 February 2018
                Page count
                Figures: 9, Tables: 1, Pages: 21
                Funding
                The authors received no specific funding for this work.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Eukaryota
                Fungi
                Yeast
                Candida
                Candida Albicans
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Fungal Pathogens
                Candida Albicans
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Fungal Pathogens
                Candida Albicans
                Biology and Life Sciences
                Mycology
                Fungal Pathogens
                Candida Albicans
                Research and Analysis Methods
                Experimental Organism Systems
                Yeast and Fungal Models
                Candida Albicans
                Engineering and Technology
                Nanotechnology
                Nanoparticles
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cell Membranes
                Biology and Life Sciences
                Microbiology
                Biofilms
                Biology and Life Sciences
                Organisms
                Eukaryota
                Fungi
                Yeast
                Physical Sciences
                Chemistry
                Chemical Elements
                Silver
                Biology and Life Sciences
                Organisms
                Eukaryota
                Fungi
                Medicine and Health Sciences
                Pharmacology
                Pharmacokinetics
                Drug Metabolism
                Custom metadata
                All relevant data are within the paper. Metarhizium robertsii strain no. IM 6519 - deposit in the collection of the Department of Industrial Microbiology and Biotechnology, University of Lodz, Poland.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article