30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Capacity for stochastic self-renewal and differentiation in mammalian spermatogonial stem cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spermatogonial stem cells have an innate ability to choose, with constant probability, between different fates independently of cues from the microenvironment.

          Abstract

          Mammalian spermatogenesis is initiated and sustained by spermatogonial stem cells (SSCs) through self-renewal and differentiation. The basic question of whether SSCs have the potential to specify self-renewal and differentiation in a cell-autonomous manner has yet to be addressed. Here, we show that rat SSCs in ex vivo culture conditions consistently give rise to two distinct types of progeny: new SSCs and differentiating germ cells, even when they have been exposed to virtually identical microenvironments. Quantitative experimental measurements and mathematical modeling indicates that fate decision is stochastic, with constant probability. These results reveal an unexpected ability in a mammalian SSC to specify both self-renewal and differentiation through a self-directed mechanism, and further suggest that this mechanism operates according to stochastic principles. These findings provide an experimental basis for autonomous and stochastic fate choice as an alternative strategy for SSC fate bifurcation, which may also be relevant to other stem cell types.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptome-wide noise controls lineage choice in mammalian progenitor cells.

          Phenotypic cell-to-cell variability within clonal populations may be a manifestation of 'gene expression noise', or it may reflect stable phenotypic variants. Such 'non-genetic cell individuality' can arise from the slow fluctuations of protein levels in mammalian cells. These fluctuations produce persistent cell individuality, thereby rendering a clonal population heterogeneous. However, it remains unknown whether this heterogeneity may account for the stochasticity of cell fate decisions in stem cells. Here we show that in clonal populations of mouse haematopoietic progenitor cells, spontaneous 'outlier' cells with either extremely high or low expression levels of the stem cell marker Sca-1 (also known as Ly6a; ref. 9) reconstitute the parental distribution of Sca-1 but do so only after more than one week. This slow relaxation is described by a gaussian mixture model that incorporates noise-driven transitions between discrete subpopulations, suggesting hidden multi-stability within one cell type. Despite clonality, the Sca-1 outliers had distinct transcriptomes. Although their unique gene expression profiles eventually reverted to that of the median cells, revealing an attractor state, they lasted long enough to confer a greatly different proclivity for choosing either the erythroid or the myeloid lineage. Preference in lineage choice was associated with increased expression of lineage-specific transcription factors, such as a >200-fold increase in Gata1 (ref. 10) among the erythroid-prone cells, or a >15-fold increased PU.1 (Sfpi1) (ref. 11) expression among myeloid-prone cells. Thus, clonal heterogeneity of gene expression level is not due to independent noise in the expression of individual genes, but reflects metastable states of a slowly fluctuating transcriptome that is distinct in individual cells and may govern the reversible, stochastic priming of multipotent progenitor cells in cell fate decision.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-term proliferation in culture and germline transmission of mouse male germline stem cells.

            Spermatogenesis is a complex process that originates in a small population of spermatogonial stem cells. Here we report the in vitro culture of spermatogonial stem cells that proliferate for long periods of time. In the presence of glial cell line-derived neurotrophic factor, epidermal growth factor, basic fibroblast growth factor, and leukemia inhibitory factor, gonocytes isolated from neonatal mouse testis proliferated over a 5-month period (>10(14)-fold) and restored fertility to congenitally infertile recipient mice following transplantation into seminiferous tubules. Long-term spermatogonial stem cell culture will be useful for studying spermatogenesis mechanism and has important implications for developing new technology in transgenesis or medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of asymmetric stem cell division.

              Stem cells self-renew but also give rise to daughter cells that are committed to lineage-specific differentiation. To achieve this remarkable task, they can undergo an intrinsically asymmetric cell division whereby they segregate cell fate determinants into only one of the two daughter cells. Alternatively, they can orient their division plane so that only one of the two daughter cells maintains contact with the niche and stem cell identity. These distinct pathways have been elucidated mostly in Drosophila. Although the molecules involved are highly conserved in vertebrates, the way they act is tissue specific and sometimes very different from invertebrates.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                16 November 2009
                : 187
                : 4
                : 513-524
                Affiliations
                [1 ]Cecil H. and Ida Green Center for Reproductive Biology Sciences , [2 ]Department of Pharmacology , [3 ]Live Cell Imaging Core Facility , [4 ]Department of Cell Biology , [5 ]Green Center Division for Systems Biology , and [6 ]Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
                Author notes
                Correspondence to Zhuoru Wu: zhuoru.wu@ 123456utsouthwestern.edu

                Dr. Garbers died on 5 September 2006.

                Article
                200907047
                10.1083/jcb.200907047
                2779229
                19948499
                901e87f0-bb51-4002-83d9-f821a4d8ca52
                © 2009 Wu et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jcb.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 9 July 2009
                : 12 October 2009
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article