46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Indirect Evolution of Hybrid Lethality Due to Linkage with Selected Locus in Mimulus guttatus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ecological selection on an adaptive allele causes a tightly linked hybrid incompatibility factor to rapidly hitchhike to high frequency in a population of the wildflower Mimulus guttatus.

          Abstract

          Most species are superbly and intricately adapted to the environments in which they live. Adaptive evolution by natural selection is the primary force shaping biological diversity. Differences between closely related species in ecologically selected characters such as habitat preference, reproductive timing, courtship behavior, or pollinator attraction may prevent interbreeding in nature, causing reproductive isolation. But does ecological adaptation cause reproductive incompatibilities such as hybrid sterility or lethality? Although several genes causing hybrid incompatibilities have been identified, there is intense debate over whether the genes that contribute to ecological adaptations also cause hybrid incompatibilities. Thirty years ago, a genetic study of local adaptation to copper mine soils in the wildflower Mimulus guttatus identified a locus that appeared to cause copper tolerance and hybrid lethality in crosses to other populations. But do copper tolerance and hybrid lethality have the same molecular genetic basis? Here we show, using high-resolution genome mapping, that copper tolerance and hybrid lethality are not caused by the same gene but are in fact separately controlled by two tightly linked loci. We further show that selection on the copper tolerance locus indirectly caused the hybrid incompatibility allele to go to high frequency in the copper mine population because of hitchhiking. Our results provide a new twist on Darwin's original supposition that hybrid incompatibilities evolve as an incidental by-product of ordinary adaptation to the environment.

          Author Summary

          Adaptive evolution by natural selection is the primary force generating biological diversity. A critical question is whether the evolution of hybrid incompatibility, which is essential for the maintenance of species diversity, is caused by adaptive evolution. In this article, we investigate one of the most widely cited examples of ecological divergence driving the evolution of reproductive incompatibility, the strong association between hybrid lethality and copper tolerance in a copper mine population of the wildflower Mimulus guttatus. Hybrid lethality and tolerance of high levels of copper co-segregate as a single Mendelian locus. While copper tolerance and hybrid lethality are nearly universal in the mine population at Copperopolis, California, they are absent from adjacent off-mine populations, suggesting that reproductive isolation evolved rapidly as a pleiotropic by-product of recent adaptation to the mine environment. We find that copper tolerance and hybrid lethality are controlled by distinct loci, in tight genetic linkage. We also demonstrate that this genomic region has experienced strong recent selection and conclude that ecological selection for copper tolerance indirectly caused the neighboring hybrid lethality allele to hitchhike to high frequency. To our knowledge, this is the first case to demonstrate that reproductive isolation factors can evolve as an incidental by-product of adaptation to novel environments through genetic hitchhiking.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Arlequin (version 3.0): An integrated software package for population genetics data analysis

          Arlequin ver 3.0 is a software package integrating several basic and advanced methods for population genetics data analysis, like the computation of standard genetic diversity indices, the estimation of allele and haplotype frequencies, tests of departure from linkage equilibrium, departure from selective neutrality and demographic equilibrium, estimation or parameters from past population expansions, and thorough analyses of population subdivision under the AMOVA framework. Arlequin 3 introduces a completely new graphical interface written in C++, a more robust semantic analysis of input files, and two new methods: a Bayesian estimation of gametic phase from multi-locus genotypes, and an estimation of the parameters of an instantaneous spatial expansion from DNA sequence polymorphism. Arlequin can handle several data types like DNA sequences, microsatellite data, or standard multi-locus genotypes. A Windows version of the software is freely available on http://cmpg.unibe.ch/software/arlequin3.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The hitch-hiking effect of a favourable gene.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Divergent selection and heterogeneous genomic divergence.

              Levels of genetic differentiation between populations can be highly variable across the genome, with divergent selection contributing to such heterogeneous genomic divergence. For example, loci under divergent selection and those tightly physically linked to them may exhibit stronger differentiation than neutral regions with weak or no linkage to such loci. Divergent selection can also increase genome-wide neutral differentiation by reducing gene flow (e.g. by causing ecological speciation), thus promoting divergence via the stochastic effects of genetic drift. These consequences of divergent selection are being reported in recently accumulating studies that identify: (i) 'outlier loci' with higher levels of divergence than expected under neutrality, and (ii) a positive association between the degree of adaptive phenotypic divergence and levels of molecular genetic differentiation across population pairs ['isolation by adaptation' (IBA)]. The latter pattern arises because as adaptive divergence increases, gene flow is reduced (thereby promoting drift) and genetic hitchhiking increased. Here, we review and integrate these previously disconnected concepts and literatures. We find that studies generally report 5-10% of loci to be outliers. These selected regions were often dispersed across the genome, commonly exhibited replicated divergence across different population pairs, and could sometimes be associated with specific ecological variables. IBA was not infrequently observed, even at neutral loci putatively unlinked to those under divergent selection. Overall, we conclude that divergent selection makes diverse contributions to heterogeneous genomic divergence. Nonetheless, the number, size, and distribution of genomic regions affected by selection varied substantially among studies, leading us to discuss the potential role of divergent selection in the growth of regions of differentiation (i.e. genomic islands of divergence), a topic in need of future investigation.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                February 2013
                February 2013
                26 February 2013
                : 11
                : 2
                : e1001497
                Affiliations
                [1 ]Department of Biology, Duke University, Durham, North Carolina, United States of America
                [2 ]Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
                [3 ]School of Biosciences, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom
                [4 ]School of Biological Sciences, The University of Texas at Austin, Austin, Texas, United States of America
                Institute of Science and Technology Austria (IST Austria), United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: KMW DL DBL MRM JHW. Performed the experiments: KMW DL DBL. Analyzed the data: KMW DL. Contributed reagents/materials/analysis tools: MRM JHW. Wrote the paper: KMW JHW.

                Article
                PBIOLOGY-D-12-02920
                10.1371/journal.pbio.1001497
                3582499
                23468595
                9021167a-3c76-4e37-872e-362c7cd3f0c0
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 July 2012
                : 16 January 2013
                Page count
                Pages: 11
                Funding
                Funding was provided by the National Science Foundation, through a FIBR grant (DBI-0328636), a Doctoral Dissertation Improvement Grant (DEB-0710318), and an Environmental Genomics Grant (EF-0723814). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Evolutionary Ecology
                Evolutionary Genetics
                Evolutionary Processes
                Population Genetics
                Genetics
                Heredity
                Complex Traits
                Gene Flow
                Genotypes
                Linkage (Genetics)
                Phenotypes
                Quantitative Traits
                Trait Locus
                Plant Science
                Plant Evolution
                Plant Genetics

                Life sciences
                Life sciences

                Comments

                Comment on this article