4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Targets and Applications of Iron Chelators for Neurodegeneration with Brain Iron Accumulation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurodegeneration with brain iron accumulation (NBIA) is a group of neurodegenerative diseases that are typically caused by a monogenetic mutation, leading to development of disordered movement symptoms such as dystonia, hyperreflexia, etc. Brain iron accumulation can be diagnosed through MRI imaging and is hypothesized to be the cause of oxidative stress, leading to the degeneration of brain tissue. There are four main types of NBIA: pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MKAN), and beta-propeller protein-associated neurodegeneration (BPAN). There are no causative therapies for these diseases, but iron chelators have been shown to have potential toward treating NBIA. Three chelators are investigated in this Review: deferoxamine (DFO), desferasirox (DFS), and deferiprone (DFP). DFO has been investigated to treat neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD); however, dose-related toxicity in these studies, as well as in PKAN studies, have shown that the drug still requires more development before it can be applied toward NBIA cases. Iron chelation therapies other than the ones currently in clinical use have not yet reached clinical studies, but they may possess characteristics that would allow them to access the brain in ways that current chelators cannot. Intranasal formulations are an attractive dosage form to study for chelation therapy, as this method of delivery can bypass the blood-brain barrier and access the CNS. Gene therapy differs from iron chelation therapy as it is a causal treatment of the disease, whereas iron chelators only target the disease progression of NBIA. Because the pathophysiology of NBIA diseases is still unclear, future courses of action should be focused on causative treatment; however, iron chelation therapy is the current best course of action.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagy: cellular and molecular mechanisms.

          Autophagy is a self-degradative process that is important for balancing sources of energy at critical times in development and in response to nutrient stress. Autophagy also plays a housekeeping role in removing misfolded or aggregated proteins, clearing damaged organelles, such as mitochondria, endoplasmic reticulum and peroxisomes, as well as eliminating intracellular pathogens. Thus, autophagy is generally thought of as a survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy can be either non-selective or selective in the removal of specific organelles, ribosomes and protein aggregates, although the mechanisms regulating aspects of selective autophagy are not fully worked out. In addition to elimination of intracellular aggregates and damaged organelles, autophagy promotes cellular senescence and cell surface antigen presentation, protects against genome instability and prevents necrosis, giving it a key role in preventing diseases such as cancer, neurodegeneration, cardiomyopathy, diabetes, liver disease, autoimmune diseases and infections. This review summarizes the most up-to-date findings on how autophagy is executed and regulated at the molecular level and how its disruption can lead to disease. Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagy fights disease through cellular self-digestion.

            Autophagy, or cellular self-digestion, is a cellular pathway involved in protein and organelle degradation, with an astonishing number of connections to human disease and physiology. For example, autophagic dysfunction is associated with cancer, neurodegeneration, microbial infection and ageing. Paradoxically, although autophagy is primarily a protective process for the cell, it can also play a role in cell death. Understanding autophagy may ultimately allow scientists and clinicians to harness this process for the purpose of improving human health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adeno-associated virus vector as a platform for gene therapy delivery

              Adeno-associated virus (AAV) vectors are the leading platform for gene delivery for the treatment of a variety of human diseases. Recent advances in developing clinically desirable AAV capsids, optimizing genome designs and harnessing revolutionary biotechnologies have contributed substantially to the growth of the gene therapy field. Preclinical and clinical successes in AAV-mediated gene replacement, gene silencing and gene editing have helped AAV gain popularity as the ideal therapeutic vector, with two AAV-based therapeutics gaining regulatory approval in Europe or the United States. Continued study of AAV biology and increased understanding of the associated therapeutic challenges and limitations will build the foundation for future clinical success.
                Bookmark

                Author and article information

                Journal
                ACS Bio Med Chem Au
                ACS Bio Med Chem Au
                bg
                abmcb8
                ACS Bio & Med Chem Au
                American Chemical Society
                2694-2437
                11 March 2024
                19 June 2024
                : 4
                : 3
                : 119-130
                Affiliations
                [1]Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia , Athens, Georgia 30602-2352, United States
                Author notes
                Author information
                https://orcid.org/0000-0002-0472-2815
                Article
                10.1021/acsbiomedchemau.3c00066
                11191567
                38911909
                9035d8ae-6e5b-4278-9019-d0ce34e43e62
                © 2024 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 10 October 2023
                : 20 February 2024
                : 15 February 2024
                Categories
                Review
                Custom metadata
                bg3c00066
                bg3c00066

                brain iron,reactive oxidative species,pkan,plan,bpan,mpan,iron chelation,gene therapy

                Comments

                Comment on this article