51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ocular hypertension is a major risk factor for glaucoma, a neurodegenerative disease characterized by an irreversible decrease in ganglion cells and their axons. Macroglial and microglial cells appear to play an important role in the pathogenic mechanisms of the disease. Here, we study the effects of laser-induced ocular hypertension (OHT) in the macroglia, microglia and retinal ganglion cells (RGCs) of eyes with OHT (OHT-eyes) and contralateral eyes two weeks after lasering.

          Methods

          Two groups of adult Swiss mice were used: age-matched control (naïve, n = 9); and lasered (n = 9). In the lasered animals, both OHT-eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against glial fibrillary acid protein (GFAP), neurofilament of 200kD (NF-200), ionized calcium binding adaptor molecule (Iba-1) and major histocompatibility complex class II molecule (MHC-II). The GFAP-labeled retinal area (GFAP-RA), the intensity of GFAP immunoreaction (GFAP-IR), and the number of astrocytes and NF-200 + RGCs were quantified.

          Results

          In comparison with naïve: i) astrocytes were more robust in contralateral eyes. In OHT-eyes, the astrocyte population was not homogeneous, given that astrocytes displaying only primary processes coexisted with astrocytes in which primary and secondary processes could be recognized, the former having less intense GFAP-IR ( P < 0.001); ii) GFAP-RA was increased in contralateral ( P <0.05) and decreased in OHT-eyes ( P <0.001); iii) the mean intensity of GFAP-IR was higher in OHT-eyes ( P < 0.01), and the percentage of the retinal area occupied by GFAP+ cells with higher intensity levels was increased in contralateral ( P = 0.05) and in OHT-eyes ( P < 0.01); iv) both in contralateral and in OHT-eyes, GFAP was upregulated in Müller cells and microglia was activated; v) MHC-II was upregulated on macroglia and microglia. In microglia, it was similarly expressed in contralateral and OHT-eyes. By contrast, in macroglia, MHC-II upregulation was observed mainly in astrocytes in contralateral eyes and in Müller cells in OHT-eyes; vi) NF-200+RGCs (degenerated cells) appeared in OHT-eyes with a trend for the GFAP-RA to decrease and for the NF-200+RGC number to increase from the center to the periphery (r = −0.45).

          Conclusion

          The use of the contralateral eye as an internal control in experimental induction of unilateral IOP should be reconsidered. The gliotic behavior in contralateral eyes could be related to the immune response. The absence of NF-200+RGCs (sign of RGC degeneration) leads us to postulate that the MHC-II upregulation in contralateral eyes could favor neuroprotection.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          GFAP in health and disease.

          Glial fibrillary acidic protein (GFAP) is the main intermediate filament protein in mature astrocytes, but also an important component of the cytoskeleton in astrocytes during development. Major recent developments in astrocyte biology and the discovery of novel intermediate filament functions enticed the interest in the function of GFAP. The discovery of various GFAP splice variants gave an additional boost to explore this protein in more detail. The structural role of GFAP in astrocytes has been widely accepted for a long time, but over the years, GFAP has been shown to be involved in astrocyte functions, which are important during regeneration, synaptic plasticity and reactive gliosis. Moreover, different subpopulations of astrocytes have been identified, which are likely to have distinctive tasks in brain physiology and pathology, and which are not only classified by their spatial and temporal appearance, but also by their specific expression of intermediate filaments, including distinct GFAP isoforms. The presence of these isoforms enhances the complexity of the astrocyte cytoskeleton and is likely to underlie subtype specific functions. In this review we discuss the versatility of the GFAP cytoskeletal network from gene to function with a focus on astrocytes during human brain development, aging and disease. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage.

            We examined the histologic structure of the optic nerve head in 15 eyes of nine persons with a known glaucoma history. All had been seeing eyes, varying from normal visual acuity and visual field to advanced glaucoma damage. The site of damage to nerve fibers is the scleral lamina cribrosa, where there is local blockage of axonal transport. Early cup size increase prior to definite field loss results from loss of nerve fibers, not from damage to astrocytic glial cells of the nerve head. No selective damage to nerve head capillaries is seen in mildly damaged specimens. Scanning electron microscopic analysis suggests that the structure of the lamina cribrosa is an important determinant of the degree of susceptibility to damage by elevated intraocular pressure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons.

              To compare the number of retinal ganglion cells (RGCs) topographically mapped with specific visual field threshold test data in the same eyes among glaucoma patients. Seventeen eyes of 13 persons with well-documented glaucoma histories and Humphrey threshold visual field tests (San Leandro, CA) were obtained from eye banks. RGC number was estimated by histologic counts of retinal sections and by counts of remaining axons in the optic nerves. The locations of the retinal samples corresponded to specific test points in the visual field. The data for glaucoma patients were compared with 17 eyes of 17 persons who were group matched for age, had no ocular history, and had normal eyes by histologic examination. The mean RGC loss for the entire retina averaged 10.2%, indicating that many eyes had early glaucoma damage. RGC body loss averaged 35.7% in eyes with corrected pattern SD probability less than 0.5%. When upper to lower retina RGC counts were compared with their corresponding visual field data within each eye, a 5-dB loss in sensitivity was associated with 25% RGC loss. For individual points that were abnormal at a probability less than 0.5%, the mean RGC loss was 29%. In control eyes, the loss of RGCs with age was estimated as 7205 cells per year in persons between 55 and 95 years of age. In optic nerves from glaucoma subjects, smaller axons were significantly more likely to be present than larger axons (R2 = 0.78, P<0.001). At least 25% to 35% RGC loss is associated with statistical abnormalities in automated visual field testing. In addition, these data corroborate previous findings that RGCs with larger diameter axons preferentially die in glaucoma.
                Bookmark

                Author and article information

                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central
                1742-2094
                2012
                14 May 2012
                : 9
                : 92
                Affiliations
                [1 ]Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, 28040, Spain
                [2 ]Escuela Universitaria de Óptica, Universidad Complutense de Madrid, Madrid, 28037, Spain
                [3 ]Departamento de Oftalmología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, 28040, Spain
                [4 ]Department of Ophthalmology, School of Medicine, Campus Universitario de Espinardo, Murcia University, Murcia, Espinardo, 30100, Spain
                Article
                1742-2094-9-92
                10.1186/1742-2094-9-92
                3410794
                22583833
                90430138-c29f-4385-999b-d9b3e00eb93a
                Copyright ©2012 Gallego et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 November 2011
                : 14 May 2012
                Categories
                Research

                Neurosciences
                experimental glaucoma,retina,mice,mhc-ii,astrocytes,microglia,müller cell,gfap
                Neurosciences
                experimental glaucoma, retina, mice, mhc-ii, astrocytes, microglia, müller cell, gfap

                Comments

                Comment on this article