6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structure–Property Relationships in Lanthanide‐Doped Upconverting Nanocrystals: Recent Advances in Understanding Core–Shell Structures

      1 , 1 , 2 , 3 , 3 , 1 , 2
      Advanced Materials
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: not found
          • Article: not found

          Upconversion and anti-Stokes processes with f and d ions in solids.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tuning upconversion through energy migration in core-shell nanoparticles.

            Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties.

              We report a general synthesis of high-quality cubic (alpha-phase) and hexagonal (beta-phase) NaREF4 (RE: Pr to Lu, Y) nanocrystals (nanopolyhedra, nanorods, nanoplates, and nanospheres) and NaYF(4):Yb,Er/Tm nanocrystals (nanopolyhedra and nanoplates) via the co-thermolysis of Na(CF3COO) and RE(CF3COO)3 in oleic acid/oleylamine/1-octadecene. By tuning the ratio of Na/RE, solvent composition, reaction temperature and time, we can manipulate phase, shape, and size of the nanocrystals. On the basis of its alpha --> beta phase transition behavior, along the rare-earth series, NaREF4 can be divided into three groups (I: Pr and Nd; II: Sm to Tb; III: Dy to Lu, Y). The whole controlled-synthesis mechanism can be explained from the point of view of free energy. Photoluminescent measurements indicate that the value of I610/I590 and the overall emission intensity of the NaEuF4 nanocrystals are highly correlative with the symmetries of the Eu3+ ions in both the lattice and the surface.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                0935-9648
                1521-4095
                June 24 2019
                June 2019
                April 03 2019
                June 2019
                : 31
                : 26
                : 1900623
                Affiliations
                [1 ]Institute of Microstructure TechnologyKarlsruhe Institute of Technology Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
                [2 ]Light Technology InstituteKarlsruhe Institute of Technology Engesserstrasse 13 76131 Karlsruhe Germany
                [3 ]Laboratory for Electron MicroscopyKarlsruhe Institute of Technology Engesserstrasse 7 76131 Karlsruhe Germany
                Article
                10.1002/adma.201900623
                90450e74-f336-4e50-b06a-47d543ac9383
                © 2019

                http://creativecommons.org/licenses/by-nc/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article