0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Absolute-value based preconditioner for complex-shifted Laplacian systems

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The complex-shifted Laplacian systems arising in a wide range of applications. In this work, we propose an absolute-value based preconditioner for solving the complex-shifted Laplacian system. In our approach, the complex-shifted Laplacian system is equivalently rewritten as a \(2\times 2\) block real linear system. With the Toeplitz structure of uniform-grid discretization of the constant-coefficient Laplacian operator, the absolute value of the block real matrix is fast invertible by means of fast sine transforms. For more general coefficient function, we then average the coefficient function and take the absolute value of the averaged matrix as our preconditioner. With assumptions on the complex shift, we theoretically prove that the eigenvalues of the preconditioned matrix in absolute value are upper and lower bounded by constants independent of matrix size, indicating a matrix-size independent linear convergence rate of MINRES solver. Interestingly, numerical results show that the proposed preconditioner is still efficient even if the assumptions on the complex shift are not met. The fast invertibility of the proposed preconditioner and the robust convergence rate of the preconditioned MINRES solver lead to a linearithmic (nearly optimal) complexity of the proposed solver. The proposed preconditioner is compared with several state-of-the-art preconditioners via several numerical examples to demonstrate the efficiency of the proposed preconditioner.

          Related collections

          Author and article information

          Journal
          01 August 2024
          Article
          2408.00488
          904db739-5317-4d88-be9a-48f2e9385924

          http://creativecommons.org/licenses/by-nc-nd/4.0/

          History
          Custom metadata
          math.NA cs.NA

          Numerical & Computational mathematics
          Numerical & Computational mathematics

          Comments

          Comment on this article