49
views
0
recommends
+1 Recommend
0 collections
    6
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversity trends in bread wheat in Italy during the 20th century assessed by traditional and multivariate approaches

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A collection of 157 Triticum aestivum accessions, representative of wheat breeding in Italy during the 20 th century, was assembled to describe the evolutionary trends of cultivated varieties throughout this period. The lines were cultivated in Italy, in two locations, over two growing seasons, and evaluated for several agronomical, morphological and qualitative traits. Analyses were conducted using the most common univariate approach on individual plant traits coupled with a correspondance multivariate approach. ANOVA showed a clear trend from old to new varieties, leading towards earliness, plant height reduction and denser spikes with smaller seeds. The average protein content gradually decreased over time; however this trend did not affect bread-making quality, because it was counterbalanced by a gradual increase of SDS sedimentation volume, achieved by the incorporation of favourable alleles into recent cultivars. Correspondence analysis allowed an overall view of the breeding activity. A clear-cut separation was observed between ancient lines and all the others, matched with a two-step gradient, the first, corresponding roughly to the period 1920–1940, which can be ascribed mostly to genetics, the second, from the 40s onward, which can be ascribed also to the farming practice innovations, such as improvement of mechanical devices and optimised use of fertilizers.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple trait analysis of genetic mapping for quantitative trait loci.

          We present in this paper models and statistical methods for performing multiple trait analysis on mapping quantitative trait loci (QTL) based on the composite interval mapping method. By taking into account the correlated structure of multiple traits, this joint analysis has several advantages, compared with separate analyses, for mapping QTL, including the expected improvement on the statistical power of the test for QTL and on the precision of parameter estimation. Also this joint analysis provides formal procedures to test a number of biologically interesting hypotheses concerning the nature of genetic correlations between different traits. Among the testing procedures considered are those for joint mapping, pleiotropy, QTL by environment interaction, and pleiotropy vs. close linkage. The test of pleiotropy (one pleiotropic QTL at a genome position) vs. close linkage (multiple nearby nonpleiotropic QTL) can have important implications for our understanding of the nature of genetic correlations between different traits in certain regions of a genome and also for practical applications in animal and plant breeding because one of the major goals in breeding is to break unfavorable linkage. Results of extensive simulation studies are presented to illustrate various properties of the analyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wheat genetic diversity trends during domestication and breeding.

            It has been claimed that plant breeding reduces genetic diversity in elite germplasm which could seriously jeopardize the continued ability to improve crops. The main objective of this study was to examine the loss of genetic diversity in spring bread wheat during (1) its domestication, (2) the change from traditional landrace cultivars (LCs) to modern breeding varieties, and (3) 50 years of international breeding. We studied 253 CIMMYT or CIMMYT-related modern wheat cultivars, LCs, and Triticum tauschii accessions, the D-genome donor of wheat, with 90 simple sequence repeat (SSR) markers dispersed across the wheat genome. A loss of genetic diversity was observed from T. tauschii to the LCs, and from the LCs to the elite breeding germplasm. Wheat's genetic diversity was narrowed from 1950 to 1989, but was enhanced from 1990 to 1997. Our results indicate that breeders averted the narrowing of the wheat germplasm base and subsequently increased the genetic diversity through the introgression of novel materials. The LCs and T. tauschii contain numerous unique alleles that were absent in modern spring bread wheat cultivars. Consequently, both the LCs and T. tauschii represent useful sources for broadening the genetic base of elite wheat breeding germplasm.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association mapping and gene-gene interaction for stem rust resistance in CIMMYT spring wheat germplasm.

              The recent emergence of wheat stem rust Ug99 and evolution of new races within the lineage threatens global wheat production because they overcome widely deployed stem rust resistance (Sr) genes that had been effective for many years. To identify loci conferring adult plant resistance to races of Ug99 in wheat, we employed an association mapping approach for 276 current spring wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT). Breeding lines were genotyped with Diversity Array Technology (DArT) and microsatellite markers. Phenotypic data was collected on these lines for stem rust race Ug99 resistance at the adult plant stage in the stem rust resistance screening nursery in Njoro, Kenya in seasons 2008, 2009 and 2010. Fifteen marker loci were found to be significantly associated with stem rust resistance. Several markers appeared to be linked to known Sr genes, while other significant markers were located in chromosome regions where no Sr genes have been previously reported. Most of these new loci colocalized with QTLs identified recently in different biparental populations. Using the same data and Q + K covariate matrices, we investigated the interactions among marker loci using linear regression models to calculate P values for pairwise marker interactions. Resistance marker loci including the Sr2 locus on 3BS and the wPt1859 locus on 7DL had significant interaction effects with other loci in the same chromosome arm and with markers on chromosome 6B. Other resistance marker loci had significant pairwise interactions with markers on different chromosomes. Based on these results, we propose that a complex network of gene-gene interactions is, in part, responsible for resistance to Ug99. Further investigation may provide insight for understanding mechanisms that contribute to this resistance gene network.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                25 February 2015
                2015
                : 5
                : 8574
                Affiliations
                [1 ]Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Unità di ricerca per la selezione dei cereali e la valorizzazione delle varietà vegetali (CRA-SCV) via R. Forlani 3 , 26866 Sant'Angelo Lodigiano (LO) – Italy
                [2 ]Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Unità di ricerca per l'ingegneria agraria (CRA-ING) via della Pascolare , 16, 00015 Monterotondo Scalo (RM) – Italy
                Author notes
                Article
                srep08574
                10.1038/srep08574
                4339800
                25712271
                904ec2fb-6562-445d-8976-fc4ebb73afa5
                Copyright © 2015, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 12 October 2014
                : 26 January 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article