115
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Animal cells harbour multiple innate effector mechanisms that inhibit virus replication. For the pathogenic retrovirus human immunodeficiency virus type-1 (HIV-1), these include widely expressed restriction factors 1 such as APOBEC3 proteins 2 , TRIM5α 3 , tetherin/BST2 4, 5 and SAMHD1 6, 7 , as well as additional factors that are stimulated by type-1 interferon (IFN) 8, 9, 10, 11, 12, 13, 14 . Here, we employ both ectopic expression and gene silencing experiments to define the human dynamin-like, IFN-induced guanosine triphosphatase (GTPase), myxovirus resistance 2 (MX2 or MxB) protein, as a potent inhibitor of HIV-1 infection and as a major effector of IFNα-mediated resistance to HIV-1 infection. MX2 suppresses infection by all HIV-1 strains tested, has similar to modest effects on divergent simian immunodeficiency viruses (SIVs), and does not inhibit other retroviruses such as murine leukaemia virus (MLV). The capsid (CA) region of the viral Gag protein dictates susceptibility to MX2, and the block to infection occurs at a late post-entry step with the nuclear accumulation and chromosomal integration of nascent viral cDNA both being suppressed. Finally, human MX1 (or MxA), a closely related protein that has long been recognised as a broadly acting inhibitor of RNA/DNA viruses, including the orthomyxovirus influenza A virus 15, 16 , does not affect HIV-1,whereas MX2 is ineffective against influenza virus. MX2 is therefore a cell-autonomous, anti-HIV-1 resistance factor whose purposeful mobilisation may represent a new therapeutic approach for the treatment of HIV/AIDS.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu.

          Human cells possess an antiviral activity that inhibits the release of retrovirus particles, and other enveloped virus particles, and is antagonized by the HIV-1 accessory protein, Vpu. This antiviral activity can be constitutively expressed or induced by interferon-alpha, and it consists of protein-based tethers, which we term 'tetherins', that cause retention of fully formed virions on infected cell surfaces. Using deductive constraints and gene expression analyses, we identify CD317 (also called BST2 or HM1.24), a membrane protein of previously unknown function, as a tetherin. Specifically, CD317 expression correlated with, and induced, a requirement for Vpu during HIV-1 and murine leukaemia virus particle release. Furthermore, in cells where HIV-1 virion release requires Vpu expression, depletion of CD317 abolished this requirement. CD317 caused retention of virions on cell surfaces and, after endocytosis, in CD317-positive compartments. Vpu co-localized with CD317 and inhibited these effects. Inhibition of Vpu function and consequent mobilization of tetherin's antiviral activity is a potential therapeutic strategy in HIV/AIDS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.

            A retroviral vector system based on the human immunodeficiency virus (HIV) was developed that, in contrast to a murine leukemia virus-based counterpart, transduced heterologous sequences into HeLa cells and rat fibroblasts blocked in the cell cycle, as well as into human primary macrophages. Additionally, the HIV vector could mediate stable in vivo gene transfer into terminally differentiated neurons. The ability of HIV-based viral vectors to deliver genes in vivo into nondividing cells could increase the applicability of retroviral vectors in human gene therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A diverse array of gene products are effectors of the type I interferon antiviral response

              The type I interferon (IFN) response protects cells from invading viral pathogens. The cellular factors that mediate this defense are the products of interferon-stimulated genes (ISGs). Although hundreds of ISGs have been identified since their discovery over 25 years ago 1,2,3 , only few have been characterized with respect to antiviral activity. For most, little is known about their antiviral potential, their target specificity, and their mechanisms of action. Using an overexpression screening approach, we show that different viruses are targeted by unique sets of ISGs, with each viral species susceptible to multiple antiviral genes with a range of inhibitory activities. To conduct the screen, over 380 ISGs were tested for their ability to inhibit the replication of several important viruses including hepatitis C virus (HCV), yellow fever virus (YFV), West Nile virus (WNV), chikungunya virus (CHIKV), Venezuelan equine encephalitis virus (VEEV), and human immunodeficiency virus (HIV-1). Broadly acting effectors included IRF1, C6orf150, HPSE, RIG-I, MDA5, and IFITM3, while more targeted antiviral specificity was observed with DDX60, IFI44L, IFI6, IFITM2, MAP3K14, MOV10, NAMPT, OASL, RTP4, TREX1, and UNC84B. Combined expression of two-ISG pairs showed additive antiviral effects similar to moderate IFN doses. Mechanistic studies revealed a common theme of translational inhibition for numerous effectors. Several ISGs, including ADAR, FAM46C, LY6E, and MCOLN2, enhanced replication of certain viruses, highlighting another layer of complexity in the highly pleiotropic IFN system.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                15 August 2013
                18 September 2013
                24 October 2013
                24 April 2014
                : 502
                : 7472
                : 10.1038/nature12542
                Affiliations
                [1 ]Department of Infectious Diseases, King’s College London, London, U.K.
                [2 ]Section of Virology, Department of Medicine, Imperial College London, London, U.K.
                [3 ]Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, U.K.
                [4 ]Department of Medical and Molecular Genetics, King’s College London, London, U.K.
                Author notes
                [* ]Corresponding author: Department of Infectious Diseases, King’s College London, 2 nd Floor, Borough Wing, Guy’s Hospital, London Bridge, London, SE1 9RT. Phone: 44 20 7188 0149, Fax: 44 20 7188 0147, michael.malim@ 123456kcl.ac.uk

                Author contributions. CG and MHM designed the study and wrote the manuscript. CG carried out the experiments. OM and WSB designed and carried out the influenza A virus experiment. OM, HB, TD, CCW, TS and SH provided technical assistance. RS performed the microarray analysis. All authors read and approved the final manuscript.

                Article
                EMS54484
                10.1038/nature12542
                3808269
                24048477
                90541552-91db-4352-a6b5-6fa8e7eccab9

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article