26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Translational control of the fibroblast-extracellular matrix association : An application to pulmonary fibrosis

      review-article
      * ,
      Translation
      Taylor & Francis
      IPF, Integrins, collagen, extracellular matrix, pulmonary fibrosis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pulmonary fibrosis is a severe lung disease characterized by sustained propagation of lung fibroblasts and relentless accumulation of extracellular matrix (ECM). Idiopathic pulmonary fibrosis (IPF) is the most severe chronic form of pulmonary fibrosis and results both in the gradual exchange of normal lung parenchyma with fibrotic tissue and in the irreversible impairment of gas exchange in the lung. Despite the urgency for novel therapies in IPF treatment, there is no effective and proven medical therapy available. Molecular mechanisms underlying IPF pathogenesis include aberrant ECM signaling through the canonical integrin/PI3K/Akt/mTORC1 signal transduction pathway. One important and well-characterized downstream effector of this pathway is the cellular protein synthesis machinery. Here we will review the recent advances in our understanding of the function of ECM and integrin receptor signaling in development of IPF and will present evidence indicating that the dysregulation of the eIF4F-mediated translational apparatus is an important factor in the development and progression of IPF and other fibrotic disorders. We further discuss the perspectives and challenges to curbing this deadly disease by targeting aberrant translation.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Translational control in cancer.

          Remarkable progress has been made in defining a new understanding of the role of mRNA translation and protein synthesis in human cancer. Translational control is a crucial component of cancer development and progression, directing both global control of protein synthesis and selective translation of specific mRNAs that promote tumour cell survival, angiogenesis, transformation, invasion and metastasis. Translational control of cancer is multifaceted, involving alterations in translation factor levels and activities unique to different types of cancers, disease stages and the tumour microenvironment. Several clinical efforts are underway to target specific components of the translation apparatus or unique mRNA translation elements for cancer therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing.

            Accumulating evidence indicates that there is extensive crosstalk between integrins and TGF-beta signalling. TGF-beta affects integrin-mediated cell adhesion and migration by regulating the expression of integrins, their ligands and integrin-associated proteins. Conversely, several integrins directly control TGF-beta activation. In addition, a number of integrins can interfere with both Smad-dependent and Smad-independent TGF-beta signalling in different ways, including the regulation of the expression of TGF-beta signalling pathway components, the physical association of integrins with TGF-beta receptors and the modulation of downstream effectors. Reciprocal TGF-beta-integrin signalling is implicated in normal physiology, as well as in a variety of pathological processes including systemic sclerosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease and cancer; thus, integrins could provide attractive therapeutic targets to interfere with TGF-beta signalling in these processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar.

              Granulation tissue formation and contraction is an important step of second intention wound healing. Granulation tissue develops from the connective tissue surrounding the damaged or missing area and its cellular components are mainly small vessel and inflammatory cells as well as fibroblasts and myofibroblasts. As the wound closes and evolves into a scar, there is an important decrease in cellularity; in particular myofibroblasts disappear. The question arises as to which process is responsible for this cellular loss. During a previous investigation on the expression of alpha-smooth muscle actin in myofibroblasts (Darby I, Skalli O, Gabbiani G, Lab Invest, 1990, 63:21-29), we have observed that in late phases of wound healing, many myofibroblasts show changes compatible with apoptosis and suggested that this type of cell death could be responsible for the disappearance of myofibroblasts. We have now tested this hypothesis by means of morphometry at the electron microscopic level and by in situ end labeling of fragmented DNA. Our results indicate that the number of myofibroblastic and vascular cells undergoing apoptosis increases as the wound closes and support the assumption that this is the mechanism of granulation tissue evolution into a scar. The regulation of apoptotic phenomena during wound healing may be important in scar establishment and development of pathological scarring.
                Bookmark

                Author and article information

                Journal
                Translation (Austin)
                Translation (Austin)
                KTRS
                Translation
                Taylor & Francis
                2169-0731
                2013
                1 April 2013
                : 1
                : 1
                : e23934
                Affiliations
                Department of Medicine, University of Minnesota, Minneapolis, MN USA
                Author notes
                [* ]Correspondence to: Richard Seonghun Nho, Email: nhoxx002@ 123456umn.edu
                Article
                10923934
                10.4161/trla.23934
                4718055
                26824013
                90556d26-4726-4c78-ba18-481bb721d43e
                Copyright © 2013 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 29 December 2012
                : 05 February 2013
                : 08 February 2013
                Page count
                Pages: 7
                Categories
                Review

                ipf,integrins,collagen,extracellular matrix,pulmonary fibrosis

                Comments

                Comment on this article