23
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A subterranean species of Exocelina diving beetle from the Malay Peninsula filling a 4,000 km distribution gap between Melanesia and southern China

      ,
      Subterranean Biology
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We describe a new subterranean species of the genus Exocelina Broun, 1886 (Coleoptera: Dytiscidae) from the Malay Peninsula. Almost all of the 196 species of that genus are epigean and distributed mainly in New Guinea, Australia, Oceania and New Caledonia. One epigean species is, however, known from China. The discovery of a species on the Malay Peninsula fills that distribution gap to some degree.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          The towering orogeny of New Guinea as a trigger for arthropod megadiversity.

          Early studies on Melanesian mountain systems provided insights for fundamental evolutionary and ecological concepts. These island-like systems are thought to provide opportunities in the form of newly formed, competition-free niches. Here we show that a hyperdiverse radiation of freshwater arthropods originated in the emerging central New Guinea orogen, out of Australia, about 10 million years ago. Further diversification was mainly allopatric, with repeated more recent colonization of lowlands as they emerged in the form of colliding oceanic island arcs, continental fragments and the Papuan Peninsula, as well as recolonization of the central orogen. We unveil a constant and ongoing process of lineage accumulation while the carrying capacity of the island is about to be reached, suggesting that lineage diversification speed now exceeds that of landmass/new ecological opportunity formation. Therefore, the central orogeny of New Guinea acts as a motor of diversification for the entire region.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Infrequent and unidirectional colonization of hyperdiverse Papuadytes diving beetles in New Caledonia and New Guinea.

            We present a molecular phylogenetic analysis of 2808 aligned bp of rrnL, cox1, cob, H3 and 18S rRNA of all major morphological groups of Papuadytes diving beetles (Coleoptera: Dytiscidae) which are diverse in running water habitats throughout the Australian region. We focus on the origin of the fauna of the megadiverse islands of New Guinea and New Caledonia. Parsimony as well as Bayesian analyses suggest a basal position of Australian species in a paraphyletic series, with more recent nested radiations in New Caledonia and New Guinea. According to molecular clock analyses, both landmasses were colonized during the Miocene, which matches geological data and corroborates similar findings in other taxonomic groups. Our analyses suggest that dispersal played an important role in the formation of these large insular faunas, although successful colonization appears to be a rare event, and, in this case, is unidirectional. Whether or not a lineage is present on an island is due to chance: Papuadytes are absent from Fiji, where related Copelatus have radiated extensively in the same habitats occupied by Papuadytes in New Caledonia and New Guinea, while Copelatus are absent from New Caledonia. Lineages of Papuadytes apparently colonized New Caledonia twice, around 14 and 9 MYA according to the molecular calibration, and both lineages are derived from an Australian ancestor. The older clade is represented only by two apparently relictual mountain species (one morphologically strongly adapted to highly ephemeral habitats), while the younger clade contains at least 18 species exhibiting a great morphological diversity. The 150+ species in New Guinea are monophyletic, apparently derived from an Australian ancestor, and constitute a morphologically rather homogenous group. The tree backbone remains insufficiently supported under parsimony and Bayesian analyses, where shorter branches suggest a rapid sequence of major branching events.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mosaic patterns of diversification dynamics following the colonization of Melanesian islands

              The fate of newly settled dispersers on freshly colonized oceanic islands is a central theme of island biogeography. The emergence of increasingly sophisticated methods of macroevolutionary pattern inference paves the way for a deeper understanding of the mechanisms governing these diversification patterns on lineages following their colonization of oceanic islands. Here we infer a comprehensive molecular phylogeny for Melanesian Exocelina diving beetles. Recent methods in historical biogeography and diversification rate inference were then used to investigate the evolution of these insects in space and time. An Australian origin in the mid-Miocene was followed by independent colonization events towards New Guinea and New Caledonia in the late Miocene. One colonization of New Guinea led to a large radiation of >150 species and 3 independent colonizations of New Caledonia gave rise to about 40 species. The comparably late colonizations of Vanuatu, Hawaii and China left only one or two species in each region. The contrasting diversification trajectories of these insects on Melanesian islands are likely accounted for by island size, age and availability of ecological opportunities during the colonization stage.
                Bookmark

                Author and article information

                Journal
                Subterranean Biology
                SB
                Pensoft Publishers
                1314-2615
                1768-1448
                March 10 2020
                March 10 2020
                : 34
                : 25-37
                Article
                10.3897/subtbiol.34.50148
                90592215-bce1-41e4-8af9-581b39a50ecd
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article