69
views
0
recommends
+1 Recommend
3 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibiotic resistomes of healthy pig faecal metagenomes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibiotic resistance reservoirs within food-producing animals are thought to be a risk to animal and human health. This study describes the minimum natural resistome of pig faeces as the bacteria are under no direct antibiotic selective pressure. The faecal resistome of 257 different genes comprised 56 core and 201 accessory resistance genes. The genes present at the highest relative abundances across all samples were tetW, tetQ, tet44, tet37, tet40, mefA, aadE, ant(9)−1, ermB and cfxA2. This study characterized the baseline resistome, the microbiome composition and the metabolic components described by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in healthy pig faeces, without antibiotic selective pressures. The microbiome hierarchical analysis resulted in a cluster tree with a highly similar pattern to that of the accessory resistome cluster tree. Functional capacity profiling identified genes associated with horizontal gene transfer. We identified a statistically significant positive correlation between the total antibiotic resistome and suggested indicator genes, which agree with using these genes as indicators of the total resistomes. The correlation between total resistome and total microbiome in this study was positive and statistically significant. Therefore, the microbiome composition influenced the resistome composition. This study identified a core and accessory resistome present in a cohort of healthy pigs, in the same conditions without antibiotics. It highlights the presence of antibiotic resistance in the absence of antibiotic selective pressure and the variability between animals even under the same housing, food and living conditions. Antibiotic resistance will remain in the healthy pig gut even when antibiotics are not used. Therefore, the risk of antibiotic resistance transfer from animal faeces to human pathogens or the environment will remain in the absence of antibiotics.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Tackling antibiotic resistance: the environmental framework.

          Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial phylogeny structures soil resistomes across habitats

            Summary Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil 1–3 , including genes identical to those in human pathogens 4 . Despite the apparent overlap between soil and clinical resistomes 4–6 , factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown 3 . General metagenome functions often correlate with the underlying structure of bacterial communities 7–12 . However, ARGs are hypothesized to be highly mobile 4,5,13 , prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions 13,14 . To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2895 ARGs we discovered were predominantly novel, and represent all major resistance mechanisms 15 . We demonstrate that distinct soil types harbor distinct resistomes, and that nitrogen fertilizer amendments strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements syntenic with ARGs were rare in soil compared to sequenced pathogens, suggesting that ARGs in the soil may not transfer between bacteria as readily as is observed in the clinic. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny 13,14 .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions

              Abstract Calypso is an easy-to-use online software suite that allows non-expert users to mine, interpret and compare taxonomic information from metagenomic or 16S rDNA datasets. Calypso has a focus on multivariate statistical approaches that can identify complex environment-microbiome associations. The software enables quantitative visualizations, statistical testing, multivariate analysis, supervised learning, factor analysis, multivariable regression, network analysis and diversity estimates. Comprehensive help pages, tutorials and videos are provided via a wiki page. Availability and Implementation: The web-interface is accessible via http://cgenome.net/calypso/. The software is programmed in Java, PERL and R and the source code is available from Zenodo (https://zenodo.org/record/50931). The software is freely available for non-commercial users. Contact: l.krause@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Journal
                Microb Genom
                Microb Genom
                mgen
                mgen
                Microbial Genomics
                Microbiology Society
                2057-5858
                May 2019
                15 May 2019
                15 May 2019
                : 5
                : 5
                : e000272
                Affiliations
                [1 ]departmentDepartment of Biology , Maynooth University , Maynooth, Co. Kildare, Ireland
                Author notes
                *Correspondence: Fiona Walsh, fiona.walsh@ 123456nuim.ie
                Author information
                https://orcid.org/0000-0001-9248-8629
                https://orcid.org/0000-0002-3880-9978
                https://orcid.org/0000-0003-0789-1689
                Article
                000272
                10.1099/mgen.0.000272
                6562245
                31091181
                9069f775-0d5e-4ba4-83c7-e4698403891a
                © 2019 The Authors

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 03 December 2018
                : 05 April 2019
                Categories
                Research Article
                Microbial communities: Other
                Animals, Insects, Plants
                Custom metadata
                0

                metagenome,healthy,pig,antibiotic resistance,microbiome,kegg
                metagenome, healthy, pig, antibiotic resistance, microbiome, kegg

                Comments

                Comment on this article