28
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbiome species diversity and seasonal stability of two temperate marine sponges Hymeniacidon perlevis and Suberites massa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Marine sponges are diverse and functionally important members of marine benthic systems, well known to harbour complex and abundant symbiotic microorganisms as part of their species-specific microbiome. Changes in the sponge microbiome have previously been observed in relation to natural environmental changes, including nutrient availability, temperature and light. With global climate change altering seasonal temperatures, this study aims to better understand the potential effects of natural seasonal fluctuations on the composition and functions of the sponge microbiome.

          Results

          Metataxonomic sequencing of two marine sponge species native to the U.K. ( Hymeniacidon perlevis and Suberites massa) was performed at two different seasonal temperatures from the same estuary. A host-specific microbiome was observed in each species between both seasons. Detected diversity within S. massa was dominated by one family, Terasakiellaceae, with remaining dominant families also being detected in the associated seawater. H. perlevis demonstrated sponge specific bacterial families including aforementioned Terasakiellaceae as well as Sphingomonadaceae and Leptospiraceae with further sponge enriched families present.

          Conclusions

          To our knowledge, these results describe for the first time the microbial diversity of the temperate marine sponge species H. perlevis and S. massa using next generation sequencing. This analysis detected the presence of core sponge taxa identified in each sponge species was not changed by seasonal temperature alterations, however, there were shifts observed in overall community composition due to fluctuations in less abundant taxa, demonstrating that microbiome stability across seasons is likely to be host species specific.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s40793-023-00508-7.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          DADA2: High resolution sample inference from Illumina amplicon data

          We present DADA2, a software package that models and corrects Illumina-sequenced amplicon errors. DADA2 infers sample sequences exactly, without coarse-graining into OTUs, and resolves differences of as little as one nucleotide. In several mock communities DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cutadapt removes adapter sequences from high-throughput sequencing reads

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data

              Background The analysis of microbial communities through DNA sequencing brings many challenges: the integration of different types of data with methods from ecology, genetics, phylogenetics, multivariate statistics, visualization and testing. With the increased breadth of experimental designs now being pursued, project-specific statistical analyses are often needed, and these analyses are often difficult (or impossible) for peer researchers to independently reproduce. The vast majority of the requisite tools for performing these analyses reproducibly are already implemented in R and its extensions (packages), but with limited support for high throughput microbiome census data. Results Here we describe a software project, phyloseq, dedicated to the object-oriented representation and analysis of microbiome census data in R. It supports importing data from a variety of common formats, as well as many analysis techniques. These include calibration, filtering, subsetting, agglomeration, multi-table comparisons, diversity analysis, parallelized Fast UniFrac, ordination methods, and production of publication-quality graphics; all in a manner that is easy to document, share, and modify. We show how to apply functions from other R packages to phyloseq-represented data, illustrating the availability of a large number of open source analysis techniques. We discuss the use of phyloseq with tools for reproducible research, a practice common in other fields but still rare in the analysis of highly parallel microbiome census data. We have made available all of the materials necessary to completely reproduce the analysis and figures included in this article, an example of best practices for reproducible research. Conclusions The phyloseq project for R is a new open-source software package, freely available on the web from both GitHub and Bioconductor.
                Bookmark

                Author and article information

                Contributors
                claire.lamb@port.ac.uk
                joy.watts@port.ac.uk
                Journal
                Environ Microbiome
                Environ Microbiome
                Environmental Microbiome
                BioMed Central (London )
                2524-6372
                8 June 2023
                8 June 2023
                2023
                : 18
                : 52
                Affiliations
                [1 ]Centre for Enzyme Innovation, Portsmouth, UK
                [2 ]GRID grid.4701.2, ISNI 0000 0001 0728 6636, School of Biological Sciences, , University of Portsmouth, ; Portsmouth, UK
                Article
                508
                10.1186/s40793-023-00508-7
                10251714
                37291644
                9072e092-8858-425e-8933-fef5b2dcd831
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 16 February 2023
                : 26 May 2023
                Funding
                Funded by: Expanding Excellence (E3), Research England
                Award ID: CL supported with student bursary award (31999) from the Centre for Enzyme Innovation
                Award ID: CL supported with student bursary award (31999) from the Centre for Enzyme Innovation
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                marine sponge,sponge microbiome,metataxonomic,illumina sequencing,seasonal stability

                Comments

                Comment on this article