95
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The extent to which the biodiversity and community composition of ecosystems affect their functions is an issue that grows ever more compelling as human impacts on ecosystems increase. We present evidence that supports a novel function of vertebrate biodiversity, the buffering of human risk of exposure to Lyme-disease-bearing ticks. We tested the Dilution Effect model, which predicts that high species diversity in the community of tick hosts reduces vector infection prevalence by diluting the effects of the most competent disease reservoir, the ubiquitous white-footed mouse (Peromyscus leucopus). As habitats are degraded by fragmentation or other anthropogenic forces, some members of the host community disappear. Thus, species-poor communities tend to have mice, but few other hosts, whereas species-rich communities have mice, plus many other potential hosts. We demonstrate that the most common nonmouse hosts are relatively poor reservoirs for the Lyme spirochete and should reduce the prevalence of the disease by feeding, but rarely infecting, ticks. By accounting for nearly every host species' contribution to the number of larval ticks fed and infected, we show that as new host species are added to a depauperate community, the nymphal infection prevalence, a key risk factor, declines. We identify important "dilution hosts" (e.g., squirrels), characterized by high tick burdens, low reservoir competence, and high population density, as well as "rescue hosts" (e.g., shrews), which are capable of maintaining high disease risk when mouse density is low. Our study suggests that the preservation of vertebrate biodiversity and community composition can reduce the incidence of Lyme disease.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: found
          • Article: not found

          Species diversity and biological invasions: relating local process to community pattern.

          In a California riparian system, the most diverse natural assemblages are the most invaded by exotic plants. A direct in situ manipulation of local diversity and a seed addition experiment showed that these patterns emerge despite the intrinsic negative effects of diversity on invasions. The results suggest that species loss at small scales may reduce invasion resistance. At community-wide scales, the overwhelming effects of ecological factors spatially covarying with diversity, such as propagule supply, make the most diverse communities most likely to be invaded.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biological and social phenomenon of Lyme disease.

             A Barbour,  D N Fish (1993)
            Lyme disease, unknown in the United States two decades ago, is now the most common arthropod-borne disease in the country and has caused considerable morbidity in several suburban and rural areas. The emergence of this disease is in part the consequence of the reforestation of the northeastern United States and the rise in deer populations. Unfortunately, an accurate estimation of its importance to human and animal health has not been made because of difficulties in diagnosis and inadequate surveillance activities. Strategies for prevention of Lyme disease include vector control and vaccines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk.

              In eastern U.S. oak forests, defoliation by gypsy moths and the risk of Lyme disease are determined by interactions among acorns, white-footed mice, moths, deer, and ticks. Experimental removal of mice, which eat moth pupae, demonstrated that moth outbreaks are caused by reductions in mouse density that occur when there are no acorns. Experimental acorn addition increased mouse density. Acorn addition also increased densities of black-legged ticks, evidently by attracting deer, which are key tick hosts. Mice are primarily responsible for infecting ticks with the Lyme disease agent. The results have important implications for predicting and managing forest health and human health.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                January 21 2003
                January 13 2003
                January 21 2003
                : 100
                : 2
                : 567-571
                Article
                10.1073/pnas.0233733100
                141036
                12525705
                © 2003
                Product

                Comments

                Comment on this article