5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Baseline vascular endothelial growth factor concentration as a potential predictive marker of benefit from vandetanib in non-small cell lung cancer.

      Clinical cancer research : an official journal of the American Association for Cancer Research
      Antineoplastic Combined Chemotherapy Protocols, therapeutic use, Carcinoma, Non-Small-Cell Lung, blood, drug therapy, Clinical Trials, Phase II as Topic, Enzyme-Linked Immunosorbent Assay, Humans, Kaplan-Meier Estimate, Lung Neoplasms, Meta-Analysis as Topic, Piperidines, administration & dosage, Predictive Value of Tests, Quinazolines, Randomized Controlled Trials as Topic, Receptors, Vascular Endothelial Growth Factor, antagonists & inhibitors, Treatment Outcome, Tumor Markers, Biological, Vascular Endothelial Growth Factor A

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vandetanib [vascular endothelial growth factor (VEGF) receptor/epidermal growth factor receptor/RET inhibitor] has shown improvements in progression-free survival (PFS) in advanced non-small cell lung cancer in three randomized phase II studies: vandetanib versus gefitinib (study 3), docetaxel +/- vandetanib (study 6), and carboplatin-paclitaxel and/or vandetanib (study 7). In study 7, vandetanib monotherapy was inferior to carboplatin-paclitaxel. We performed an exploratory retrospective analysis of the relationship between baseline circulating VEGF concentrations and PFS. Mean baseline VEGF levels were determined by ELISA from two baseline samples of plasma (163 of 168 patients, study 3; 65 of 127, study 6) or serum (144 of 181, study 7). High baseline VEGF values were above the immunoassay reference range for healthy subjects; low baseline VEGF values were within the range. Patients with low baseline VEGF had a lower risk of disease progression with vandetanib versus gefitinib [hazard ratio (HR), 0.55; 95% confidence interval (95% CI), 0.35-0.86; P = 0.01] or vandetanib 100 mg/d + docetaxel versus docetaxel (HR, 0.25; 95% CI, 0.09-0.68; P = 0.01). High VEGF patients had a similar risk of disease progression with vandetanib monotherapy versus gefitinib (HR, 1.03; 95% CI, 0.60-1.75; P = 0.92) or vandetanib 100 mg/d + docetaxel versus docetaxel (HR, 0.95; 95% CI, 0.25-3.61; P = 0.94). In study 7, low VEGF patients had a similar risk of disease progression with vandetanib monotherapy 300 mg/d versus carboplatin-paclitaxel (HR, 0.80; 95% CI, 0.41-1.56; P = 0.51); high VEGF patients progressed more quickly (HR, 1.60; 95% CI, 0.81-3.15; P = 0.17). These analyses suggest that low baseline circulating VEGF may be predictive of PFS advantage in patients with advanced non-small cell lung cancer receiving vandetanib versus gefitinib or vandetanib + docetaxel versus docetaxel. Moreover, patients with low VEGF levels may have a similar outcome with either vandetanib monotherapy or carboplatin-paclitaxel.

          Related collections

          Author and article information

          Comments

          Comment on this article