18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Proton Therapy for Breast Cancer: A Consensus Statement From the Particle Therapy Cooperative Group Breast Cancer Subcommittee

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radiation therapy plays an important role in the multidisciplinary management of breast cancer. Recent years have seen improvements in breast cancer survival and a greater appreciation of potential long-term morbidity associated with the dose and volume of irradiated organs. Proton therapy reduces the dose to nontarget structures while optimizing target coverage. However, there remain additional financial costs associated with proton therapy, despite reductions over time, and studies have yet to demonstrate that protons improve upon the treatment outcomes achieved with photon radiation therapy. There remains considerable heterogeneity in proton patient selection and techniques, and the rapid technological advances in the field have the potential to affect evidence evaluation, given the long latency period for breast cancer radiation therapy recurrence and late effects. In this consensus statement, we assess the data available to the radiation oncology community of proton therapy for breast cancer, provide expert consensus recommendations on indications and technique, and highlight ongoing trials' cost-effectiveness analyses and key areas for future research.

          Related collections

          Most cited references173

          • Record: found
          • Abstract: found
          • Article: not found

          Risk of Ischemic Heart Disease in Women after Radiotherapy for Breast Cancer

          New England Journal of Medicine, 368(11), 987-998
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Use of normal tissue complication probability models in the clinic.

            The Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) review summarizes the currently available three-dimensional dose/volume/outcome data to update and refine the normal tissue dose/volume tolerance guidelines provided by the classic Emami et al. paper published in 1991. A "clinician's view" on using the QUANTEC information in a responsible manner is presented along with a description of the most commonly used normal tissue complication probability (NTCP) models. A summary of organ-specific dose/volume/outcome data, based on the QUANTEC reviews, is included. Copyright 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials.

              In early breast cancer, variations in local treatment that substantially affect the risk of locoregional recurrence could also affect long-term breast cancer mortality. To examine this relationship, collaborative meta-analyses were undertaken, based on individual patient data, of the relevant randomised trials that began by 1995. Information was available on 42,000 women in 78 randomised treatment comparisons (radiotherapy vs no radiotherapy, 23,500; more vs less surgery, 9300; more surgery vs radiotherapy, 9300). 24 types of local treatment comparison were identified. To help relate the effect on local (ie, locoregional) recurrence to that on breast cancer mortality, these were grouped according to whether or not the 5-year local recurrence risk exceeded 10% ( 10%, 25,000 women). About three-quarters of the eventual local recurrence risk occurred during the first 5 years. In the comparisons that involved little ( 10%) differences, however, 5-year local recurrence risks were 7% active versus 26% control (absolute reduction 19%), and 15-year breast cancer mortality risks were 44.6% versus 49.5% (absolute reduction 5.0%, SE 0.8, 2p<0.00001). These 25,000 women included 7300 with breast-conserving surgery (BCS) in trials of radiotherapy (generally just to the conserved breast), with 5-year local recurrence risks (mainly in the conserved breast, as most had axillary clearance and node-negative disease) 7% versus 26% (reduction 19%), and 15-year breast cancer mortality risks 30.5% versus 35.9% (reduction 5.4%, SE 1.7, 2p=0.0002; overall mortality reduction 5.3%, SE 1.8, 2p=0.005). They also included 8500 with mastectomy, axillary clearance, and node-positive disease in trials of radiotherapy (generally to the chest wall and regional lymph nodes), with similar absolute gains from radiotherapy; 5-year local recurrence risks (mainly at these sites) 6% versus 23% (reduction 17%), and 15-year breast cancer mortality risks 54.7% versus 60.1% (reduction 5.4%, SE 1.3, 2p=0.0002; overall mortality reduction 4.4%, SE 1.2, 2p=0.0009). Radiotherapy produced similar proportional reductions in local recurrence in all women (irrespective of age or tumour characteristics) and in all major trials of radiotherapy versus not (recent or older; with or without systemic therapy), so large absolute reductions in local recurrence were seen only if the control risk was large. To help assess the life-threatening side-effects of radiotherapy, the trials of radiotherapy versus not were combined with those of radiotherapy versus more surgery. There was, at least with some of the older radiotherapy regimens, a significant excess incidence of contralateral breast cancer (rate ratio 1.18, SE 0.06, 2p=0.002) and a significant excess of non-breast-cancer mortality in irradiated women (rate ratio 1.12, SE 0.04, 2p=0.001). Both were slight during the first 5 years, but continued after year 15. The excess mortality was mainly from heart disease (rate ratio 1.27, SE 0.07, 2p=0.0001) and lung cancer (rate ratio 1.78, SE 0.22, 2p=0.0004). In these trials, avoidance of a local recurrence in the conserved breast after BCS and avoidance of a local recurrence elsewhere (eg, the chest wall or regional nodes) after mastectomy were of comparable relevance to 15-year breast cancer mortality. Differences in local treatment that substantially affect local recurrence rates would, in the hypothetical absence of any other causes of death, avoid about one breast cancer death over the next 15 years for every four local recurrences avoided, and should reduce 15-year overall mortality.
                Bookmark

                Author and article information

                Journal
                International Journal of Radiation Oncology*Biology*Physics
                International Journal of Radiation Oncology*Biology*Physics
                Elsevier BV
                03603016
                October 2021
                October 2021
                : 111
                : 2
                : 337-359
                Article
                10.1016/j.ijrobp.2021.05.110
                8416711
                34048815
                90abe024-4a59-4c29-b7f3-71cebf182171
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article