71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Co-ordinated Role of TLR3, RIG-I and MDA5 in the Innate Response to Rhinovirus in Bronchial Epithelium

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The relative roles of the endosomal TLR3/7/8 versus the intracellular RNA helicases RIG-I and MDA5 in viral infection is much debated. We investigated the roles of each pattern recognition receptor in rhinovirus infection using primary bronchial epithelial cells. TLR3 was constitutively expressed; however, RIG-I and MDA5 were inducible by 8–12 h following rhinovirus infection. Bronchial epithelial tissue from normal volunteers challenged with rhinovirus in vivo exhibited low levels of RIG-I and MDA5 that were increased at day 4 post infection. Inhibition of TLR3, RIG-I and MDA5 by siRNA reduced innate cytokine mRNA, and increased rhinovirus replication. Inhibition of TLR3 and TRIF using siRNA reduced rhinovirus induced RNA helicases. Furthermore, IFNAR1 deficient mice exhibited RIG-I and MDA5 induction early during RV1B infection in an interferon independent manner. Hence anti-viral defense within bronchial epithelium requires co-ordinated recognition of rhinovirus infection, initially via TLR3/TRIF and later via inducible RNA helicases.

          Author Summary

          Host-pathogen interactions are mediated by pattern recognition receptors that identify conserved structures of micro-organisms that are distinct from self. During a viral infection, important pattern recognition receptors include the endosomal Toll-like receptors (TLRs), and a second set of cytoplasmic pattern recognition receptors known as the RNA helicases. Many studies have highlighted the importance of TLR3, TLR7/8 and the RNA helicases in providing robust anti-viral immunity via interferon induction and inflammation. Both endosomal TLR and cytoplasmic RNA helicase mediated pathways are believed to exist as separate yet non-redundant entities; however, little thought is given to why both systems exist, and few studies also consider how both pathways together contribute to anti-viral immunity. Using models of rhinovirus infection in primary bronchial epithelial cell culture in vitro and experimental infection in mouse and human models in vivo, we show that the RNA helicases are preferentially induced early in the infection cycle via TLR3 mediated signaling events, and work in a co-ordinated, systematic manner. The results help understand the complex events that determine effective innate immunity to rhinovirus infection and how these processes contribute to virus induced exacerbations of asthma and chronic obstructive pulmonary disease.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA.

          Interferons (IFNs) are critical for protection from viral infection, but the pathways linking virus recognition to IFN induction remain poorly understood. Plasmacytoid dendritic cells produce vast amounts of IFN-alpha in response to the wild-type influenza virus. Here, we show that this requires endosomal recognition of influenza genomic RNA and signaling by means of Toll-like receptor 7 (TLR7) and MyD88. Single-stranded RNA (ssRNA) molecules of nonviral origin also induce TLR7-dependent production of inflammatory cytokines. These results identify ssRNA as a ligand for TLR7 and suggest that cells of the innate immune system sense endosomal ssRNA to detect infection by RNA viruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates.

            Double-stranded RNA (dsRNA) produced during viral replication is believed to be the critical trigger for activation of antiviral immunity mediated by the RNA helicase enzymes retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We showed that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5'-phosphates. This is blocked by the influenza protein nonstructured protein 1 (NS1), which is found in a complex with RIG-I in infected cells. These results identify RIG-I as a ssRNA sensor and potential target of viral immune evasion and suggest that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Community study of role of viral infections in exacerbations of asthma in 9-11 year old children.

              To study the association between upper and lower respiratory viral infections and acute exacerbations of asthma in schoolchildren in the community. Community based 13 month longitudinal study using diary card respiratory symptom and peak expiratory flow monitoring to allow early sampling for viruses. 108 Children aged 9-11 years who had reported wheeze or cough, or both, in a questionnaire. Southampton and surrounding community. Upper and lower respiratory viral infections detected by polymerase chain reaction or conventional methods, reported exacerbations of asthma, computer identified episodes of respiratory tract symptoms or peak flow reductions. Viruses were detected in 80% of reported episodes of reduced peak expiratory flow, 80% of reported episodes of wheeze, and in 85% of reported episodes of upper respiratory symptoms, cough, wheeze, and a fall in peak expiratory flow. The median duration of reported falls in peak expiratory flow was 14 days, and the median maximum fall in peak expiratory flow was 81 l/min. The most commonly identified virus type was rhinovirus. This study supports the hypothesis that upper respiratory viral infections are associated with 80-85% of asthma exacerbations in school age children.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2010
                November 2010
                4 November 2010
                : 6
                : 11
                : e1001178
                Affiliations
                [1 ]Department of Respiratory Medicine, National Heart & Lung Institute, Imperial College London, London, United Kingdom
                [2 ]MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
                [3 ]Centre for Respiratory Infection, London, United Kingdom
                [4 ]Lung Pathology, National Heart & Lung Institute, Imperial College London, London, United Kingdom
                [5 ]Imperial Healthcare NHS Trust, London, United Kingdom
                [6 ]Respiratory Pharmacology, National Heart & Lung Institute, Imperial College London, London, United Kingdom
                [7 ]Institute of Virus Research, Kyoto University, Kyoto, Japan
                University of North Carolina at Chapel Hill, United States of America
                Author notes

                Conceived and designed the experiments: LS NWB JZ SDM RPW AS MGB TF PKJ SLJ MRE. Performed the experiments: LS NWB JJH JZ SDM RPW AS SD DLC MRE. Analyzed the data: LS NWB JJH RPW SD MRE. Contributed reagents/materials/analysis tools: DLC MGB OMK TF PKJ. Wrote the paper: LS SLJ MRE.

                Article
                10-PLPA-RA-2588R4
                10.1371/journal.ppat.1001178
                2973831
                21079690
                90b8b6f2-6e90-4c7e-8d76-c891b2871d1f
                Slater et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 February 2010
                : 1 October 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Immunology/Cellular Microbiology and Pathogenesis
                Immunology/Immunity to Infections
                Immunology/Innate Immunity
                Infectious Diseases/Respiratory Infections
                Infectious Diseases/Viral Infections

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article