32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular evolution of the ent-kaurenoic acid oxidase gene in Oryzeae

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We surveyed the substitution patterns in the ent-kaurenoic acid oxidase (KAO) gene in 11 species of Oryzeae with an outgroup in the Ehrhartoidaea. The synonymous and non-synonymous substitution rates showed a high positive correlation with each other, but were negatively correlated with codon usage bias and GC content at third codon positions. The substitution rate was heterogenous among lineages. Likelihood-ratio tests showed that the non-synonymous/synonymous rate ratio changed significantly among lineages. Site-specific models provided no evidence for positive selection of particular amino acid sites in any codon of the KAO gene. This finding suggested that the significant rate heterogeneity among some lineages may have been caused by variability in the relaxation of the selective constraint among lineages or by neutral processes.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The origins of genome complexity.

          Complete genomic sequences from diverse phylogenetic lineages reveal notable increases in genome complexity from prokaryotes to multicellular eukaryotes. The changes include gradual increases in gene number, resulting from the retention of duplicate genes, and more abrupt increases in the abundance of spliceosomal introns and mobile genetic elements. We argue that many of these modifications emerged passively in response to the long-term population-size reductions that accompanied increases in organism size. According to this model, much of the restructuring of eukaryotic genomes was initiated by nonadaptive processes, and this in turn provided novel substrates for the secondary evolution of phenotypic complexity by natural selection. The enormous long-term effective population sizes of prokaryotes may impose a substantial barrier to the evolution of complex genomes and morphologies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 'effective number of codons' used in a gene.

            F. Wright (1990)
            A simple measure is presented that quantifies how far the codon usage of a gene departs from equal usage of synonymous codons. This measure of synonymous codon usage bias, the 'effective number of codons used in a gene', Nc, can be easily calculated from codon usage data alone, and is independent of gene length and amino acid (aa) composition. Nc can take values from 20, in the case of extreme bias where one codon is exclusively used for each aa, to 61 when the use of alternative synonymous codons is equally likely. Nc thus provides an intuitively meaningful measure of the extent of codon preference in a gene. Codon usage patterns across genes can be investigated by the Nc-plot: a plot of Nc vs. G + C content at synonymous sites. Nc-plots are produced for Homo sapiens, Saccharomyces cerevisiae, Escherichia coli, Bacillus subtilis, Dictyostelium discoideum, and Drosophila melanogaster. A FORTRAN77 program written to calculate Nc is available on request.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Statistical methods for detecting molecular adaptation.

              The past few years have seen the development of powerful statistical methods for detecting adaptive molecular evolution. These methods compare synonymous and nonsynonymous substitution rates in protein-coding genes, and regard a nonsynonymous rate elevated above the synonymous rate as evidence for darwinian selection. Numerous cases of molecular adaptation are being identified in various systems from viruses to humans. Although previous analyses averaging rates over sites and time have little power, recent methods designed to detect positive selection at individual sites and lineages have been successful. Here, we summarize recent statistical methods for detecting molecular adaptation, and discuss their limitations and possible improvements.
                Bookmark

                Author and article information

                Journal
                Genet Mol Biol
                Genet. Mol. Biol
                GMB
                Genetics and Molecular Biology
                Sociedade Brasileira de Genética (Ribeirão Preto, SP, Brazil )
                1415-4757
                1678-4685
                Apr-Jun 2012
                16 February 2012
                : 35
                : 2
                : 448-454
                Affiliations
                [1 ]Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
                [2 ]State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
                Author notes
                Send correspondence to Yanhua Yang. Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu Province, P.R. China. E-mail: yanhuayang@ 123456126.com .
                Article
                gmb-35-2-448
                10.1590/S1415-47572012005000020
                3389533
                22888294
                90d6613d-22bc-4c7b-9607-ca2c663ccd05
                Copyright © 2012, Sociedade Brasileira de Genética.

                License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 July 2011
                : 09 November 2011
                Categories
                Plant Genetics
                Research Article

                Molecular biology
                ent-kaurenoic acid oxidase (kao),rate heterogeneity,codon usage bias,positive selection,substitution rate

                Comments

                Comment on this article