24
views
0
recommends
+1 Recommend
1 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found

      Effect of sulphation on the oestrogen agonist activity of the phytoestrogens genistein and daidzein in MCF-7 human breast cancer cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The phytoestrogens genistein, daidzein and the daidzein metabolite equol have been shown previously to possess oestrogen agonist activity. However, following consumption of soya diets, they are found in the body not only as aglycones but also as metabolites conjugated at their 4′- and 7-hydroxyl groups with sulphate. This paper describes the effects of monosulphation on the oestrogen agonist properties of these three phytoestrogens in MCF-7 human breast cancer cells in terms of their relative ability to compete with [ 3H]oestradiol for binding to oestrogen receptor (ER), to induce a stably transfected oestrogen-responsive reporter gene (ERE-CAT) and to stimulate cell growth. In no case did sulphation abolish activity. The 4′-sulphation of genistein reduced oestrogen agonist activity to a small extent in whole-cell assays but increased the relative binding affinity to ER. The 7-sulphation of genistein, and also of equol, reduced oestrogen agonist activity substantially in all assays. By contrast, the position of monosulphation of daidzein acted in an opposing manner on oestrogen agonist activity. Sulphation at the 4′-position of daidzein resulted in a modest reduction in oestrogen agonist activity but sulphation of daidzein at the 7-position resulted in an increase in oestrogen agonist activity. Molecular modelling and docking studies suggested that the inverse effects of sulphation could be explained by the binding of daidzein into the ligand-binding domain of the ER in the opposite orientation compared with genistein and equol. This is the first report of sulphation enhancing activity of an isoflavone and inverse effects of sulphation between individual phytoestrogens.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Rational design of potent sialidase-based inhibitors of influenza virus replication.

          Two potent inhibitors based on the crystal structure of influenza virus sialidase have been designed. These compounds are effective inhibitors not only of the enzyme, but also of the virus in cell culture and in animal models. The results provide an example of the power of rational, computer-assisted drug design, as well as indicating significant progress in the development of a new therapeutic or prophylactic treatment for influenza infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phyto-oestrogens and Western diseases.

            Incidences of breast, colorectal and prostate cancer are high in the Western world compared to countries in Asia. We have postulated that the Western diet compared to the semivegetarian diet in some Asian countries may alter hormone production, metabolism or action at the cellular level by some biochemical mechanisms. Our interest has been focused on two groups of hormone-like diphenolic phyto-oestrogens of dietary origin, the lignans and isoflavonoids abundant in plasma of subjects living in areas with low cancer incidence. The precursors of the biologically active compounds detected in man are found in soybean products, whole-grain cereal food, seeds, and berries. The plant lignan and isoflavonoid glycosides are converted by intestinal bacteria to hormone-like compounds. The weakly oestrogenic diphenols formed influence sex-hormone production, metabolism and biological activity, intracellular enzymes, protein synthesis, growth factor action, malignant cell proliferation, differentiation, cell adhesion and angiogenesis in such a way as to make them strong candidates for a role as natural cancer-protective compounds. Their effect on some of the most important steroid biosynthetic enzymes may result in beneficial modulation of hormone concentrations and action in the cells preventing development of cancer. Owing to their oestrogenic activity they reduce hot flushes and vaginal dryness in postmenopausal women and may to some degree inhibit osteoporosis, but alone they may be insufficient for complete protection. Soy intake prevents oxidation of the low-density lipoproteins in vitro when isolated from soy-treated individuals and affect favourably plasma lipid concentrations. Animal experiments provide evidence suggesting that both lignans and isoflavonoids may prevent the development of cancer as well as atherosclerosis. However, in some of these experiments it has not been possible to separate the phyto-oestrogen effect from the effect of other components in the food. The isoflavonoids and lignans may play a significant inhibitory role in cancer development particularly in the promotional phase of the disease, but recent evidence points also to a role in the initiation stage of carcinogenesis. At present, however, no definite recommendations can be made as to the dietary amounts needed for prevention of disease. This review deals with all the above-mentioned aspects of phyto-oestrogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo.

              Genistein, found in soy products, is a phytochemical with several biological activities. In the current study, our research focused on the estrogenic and proliferation-inducing activity of genistein. We have demonstrated that genistein enhanced the proliferation of estrogen-dependent human breast cancer (MCF-7) cells in vitro at concentrations as low as 10 nM, with a concentration of 100 nM achieving proliferative effects similar to those of 1 nM estradiol. Expression of the estrogen-responsive gene pS2 was also induced in MCF-7 cells in response to treatment with a concentration of genistein as low as 1 microM. At higher concentrations (above 20 microM), genistein inhibits MCF-7 cell growth. In vivo, we have shown that dietary treatment with genistein (750 ppm) for 5 days enhanced mammary gland growth in 28-day-old ovariectomized athymic mice, indicating that genistein acts as an estrogen in normal mammary tissue. To evaluate whether the estrogenic effects observed in vitro with MCF-7 cells could be reproduced in vivo, MCF-7 cells were implanted s.c. in ovariectomized athymic mice, and the growth of the estrogen-dependent tumors was measured weekly. Negative control animals received the American Institute of Nutrition (AIN)-93G diet, the positive control group received a new s.c. estradiol (2 mg) pellet plus the AIN-93G diet, and the third group received genistein at 750 ppm in the AIN-93G diet. Tumors were larger in the genistein (750 ppm)-treated group than they were in the negative control group, demonstrating that dietary genistein was able to enhance the growth of MCF-7 cell tumors in vivo. Increased uterine weights were also observed in the genistein-treated groups. In summary, genistein can act as an estrogen agonist in vivo and in vitro, resulting in the proliferation of cultured human breast cancer cells (MCF-7) and the induction of pS2 gene expression. Here we present new information that dietary genistein stimulates mammary gland growth and enhances the growth of MCF-7 cell tumors in ovariectomized athymic mice.
                Bookmark

                Author and article information

                Journal
                J Endocrinol
                JOE
                The Journal of Endocrinology
                BioScientifica (Bristol )
                0022-0795
                1479-6805
                June 2008
                14 March 2008
                : 197
                : 3
                : 503-515
                Affiliations
                [ 1 ]simpleSchool of Biological Sciences simpleThe University of Reading Reading, RG6 6AJUK
                [ 2 ]simpleStructural Biology Unit simpleThe BioCentre, University of Reading Reading, RG6 6ASUK
                [ 3 ]simpleSchool of Chemistry simpleUniversity of St Andrews St Andrews, Fife, KY16 9STUK
                Author notes
                (Correspondence should be addressed to P D Darbre; Email: p.d.darbre@ 123456reading.ac.uk )
                Article
                JOE070384
                10.1677/JOE-07-0384
                2386535
                18492816
                90d9dd50-6acc-44b6-bae7-ad576c93ddf1
                © 2008 Society for Endocrinology

                This is an Open Access article distributed under the terms of the Society for Endocrinology's Re-use Licence which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 March 2008
                : 13 March 2008
                Funding
                Funded by: Wellcome Trust
                Categories
                Regular papers

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article