12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional characterization of electron-transferring flavoprotein and its dehydrogenase required for fungal development and plant infection by the rice blast fungus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electron-transferring flavoprotein (ETF) and its dehydrogenase (ETFDH) are highly conserved electron carriers which mainly function in mitochondrial fatty acid β oxidation. Here, we report the identification and characterization of ETF α and β subunit encoding genes ( ETFA and ETFB) and ETFDH encoding gene ( ETFDH) in the rice blast fungus Magnaporthe oryzae. It was demonstrated that, by impacting fatty acid metabolism, ETF and ETFDH mutations led to severe growth and conidiation defects, which could be largely rescued by exogenous acetate or carbonate. Furthermore, although conidium germination and appressorium formation appeared to be normal in ETF and ETFDH mutants, most appressoria failed to penetrate the host epidermis due to low turgor pressure. The few appressoria that succeeded in penetration were severely restricted in invasive growth and consequently failed to cause disease. Moreover, ETF mutant etfb induced ROS accumulation in infected host cells and exogenous antioxidant GSH accelerated mutant invading growth without increasing the penetration rate. In addition, mutant etfb displayed elevated lipid body accumulation and reduced ATP synthesis. Taken together, ETF and ETFDH play an important role in fungal development and plant infection in M. oryzae by regulation of fatty acid metabolism, turgor establishment and induction of host ROS accumulation.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Rice yields decline with higher night temperature from global warming.

          The impact of projected global warming on crop yields has been evaluated by indirect methods using simulation models. Direct studies on the effects of observed climate change on crop growth and yield could provide more accurate information for assessing the impact of climate change on crop production. We analyzed weather data at the International Rice Research Institute Farm from 1979 to 2003 to examine temperature trends and the relationship between rice yield and temperature by using data from irrigated field experiments conducted at the International Rice Research Institute Farm from 1992 to 2003. Here we report that annual mean maximum and minimum temperatures have increased by 0.35 degrees C and 1.13 degrees C, respectively, for the period 1979-2003 and a close linkage between rice grain yield and mean minimum temperature during the dry cropping season (January to April). Grain yield declined by 10% for each 1 degrees C increase in growing-season minimum temperature in the dry season, whereas the effect of maximum temperature on crop yield was insignificant. This report provides a direct evidence of decreased rice yields from increased nighttime temperature associated with global warming.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification.

            Reactive oxygen species (ROS) and other radicals are involved in a variety of biological phenomena, such as mutation, carcinogenesis, degenerative and other diseases, inflammation, aging, and development. ROS are well recognized for playing a dual role as deleterious and beneficial species. The objectives of this review are to describe oxidative stress phenomena, terminology, definitions, and basic chemical characteristics of the species involved; examine the biological targets susceptible to oxidation and the defense mechanisms of the organism against these reactive metabolites; and analyze methodologies, including immunohistochemical markers, used in toxicological pathology in the visualization of oxidative stress phenomena. Direct detection of ROS and other free radicals is difficult, because these molecules are short-lived and highly reactive in a nonspecific manner. Ongoing oxidative damage is, thus, generally analyzed by measurement of secondary products including derivatives of amino acids, nuclei acids, and lipid peroxidation. Attention has been focused on electrochemical methods based on voltammetry measurements for evaluating the total reducing power of biological fluids and tissues. This approach can function as a tool to assess the antioxidant-reducing profile of a biological site and follow changes in pathological situations. This review thus includes different topics essential for understanding oxidative stress phenomena and provides tools for those intending to conduct study and research in this field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea.

              Differential cDNA cloning was used to identify genes expressed during infectious growth of the fungal pathogen Magnaporthe grisea in its host, the rice plant. We characterized one of these genes, MPG1, in detail. Using a novel assay to determine the proportion of fungal biomass present in the plant, we determined that the MPG1 transcript was 60-fold more abundant during growth in the plant than in culture. Mpg1 mutants have a reduced ability to cause disease symptoms that appears to result from an impaired ability to undergo appressorium formation. MPG1 mRNA was highly abundant very early in plant infection concomitant with appressorium formation and was also abundant at the time of symptom development. The MPG1 mRNA was also expressed during conidiation and in mycelial cultures starved for nitrogen or carbon. MPG1 potentially encodes a small, secreted, cysteine-rich, moderately hydrophobic protein with the characteristics of a fungal hydrophobin. Consistent with the role of the MPG1 gene product as a hydrophobin, Mpg1 mutants show an "easily wettable" phenotype. Our results suggest that hydrophobins may have a role in the elaboration of infective structures by fungi and may fulfill other functions in fungal phytopathogenesis.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                26 April 2016
                2016
                : 6
                : 24911
                Affiliations
                [1 ]Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University , Fuzhou, Fujian, 350002, China
                [2 ]Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center , Oklahoma City, OK 73104, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep24911
                10.1038/srep24911
                4845064
                27113712
                90e8d6cb-551c-4d6f-a9eb-1900e410a939
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 12 January 2016
                : 07 April 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article