21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The cytotoxicity of the α1-adrenoceptor antagonist prazosin is linked to an endocytotic mechanism equivalent to transport-P

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the α1-adrenergic antagonist prazosin (PRZ) was introduced into medicine as a treatment for hypertension and benign prostate hyperplasia, several studies have shown that PRZ induces apoptosis in various cell types and interferes with endocytotic trafficking. Because PRZ is also able to induce apoptosis in malignant cells, its cytotoxicity is a focus of interest in cancer research. Besides inducing apoptosis, PRZ was shown to serve as a substrate for an amine uptake mechanism originally discovered in neurones called transport-P. In line with our hypothesis that transport-P is an endocytotic mechanism also present in non-neuronal tissue and linked to the cytotoxicity of PRZ, we tested the uptake of QAPB, a fluorescent derivative of PRZ, in cancer cell lines in the presence of inhibitors of transport-P and endocytosis. Early endosomes and lysosomes were visualised by expression of RAB5-RFP and LAMP1-RFP, respectively; growth and viability of cells in the presence of PRZ and uptake inhibitors were also tested. Cancer cells showed co-localisation of QAPB with RAB5 and LAMP1 positive vesicles as well as tubulation of lysosomes. The uptake of QAPB was sensitive to transport-P inhibitors bafilomycin A1 (inhibits v-ATPase) and the antidepressant desipramine. Endocytosis inhibitors pitstop ® 2 (general inhibitor of endocytosis), dynasore (dynamin inhibitor) and methyl-β-cyclodextrin (cholesterol chelator) inhibited the uptake of QAPB. Bafilomycin A1 and methyl-β-cyclodextrin but not desipramine were able to preserve growth and viability of cells in the presence of PRZ. In summary, we confirmed the hypothesis that the cellular uptake of QAPB/PRZ represents an endocytotic mechanism equivalent to transport-P. Endocytosis of QAPB/PRZ depends on a proton gradient, dynamin and cholesterol, and results in reorganisation of the LAMP1 positive endolysosomal system. Finally, the link seen between the cellular uptake of PRZ and cell death implies a still unknown pro-apoptotic membrane protein with affinity towards PRZ.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress.

          Mitochondrial fission and fusion cycles are integrated with cell cycle progression. In this paper, we demonstrate that the inhibition of mitochondrial fission protein Drp1 causes an unexpected delay in G2/M cell cycle progression and aneuploidy. In investigating the underlying molecular mechanism, we revealed that inhibiting Drp1 triggers replication stress, which is mediated by a hyperfused mitochondrial structure and unscheduled expression of cyclin E in the G2 phase. This persistent replication stress then induces an ATM-dependent activation of the G2 to M transition cell cycle checkpoint. Knockdown of ATR, an essential kinase in preventing replication stress, significantly enhanced DNA damage and cell death of Drp1-deficienct cells. Persistent mitochondrial hyperfusion also induces centrosomal overamplification and chromosomal instability, which are causes of aneuploidy. Analysis using cells depleted of mitochondrial DNA revealed that these events are not mediated by the defects in mitochondrial ATP production and reactive oxygen species (ROS) generation. Thus dysfunctional mitochondrial fission directly induces genome instability by replication stress, which then initiates the DNA damage response. Our findings provide a novel mechanism that contributes to the cellular dysfunction and diseases associated with altered mitochondrial dynamics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins

            Integrin-mediated adhesion promotes cell survival in vitro, whereas integrin antagonists induce apoptosis of adherent cells in vivo. Here, we demonstrate that cells adherent within a three-dimensional extracellular matrix undergo apoptosis due to expression of unligated integrins, the β subunit cytoplasmic domain, or its membrane proximal sequence KLLITIHDRKEF. Integrin-mediated death requires initiator, but not stress, caspase activity and is distinct from anoikis, which is caused by the loss of adhesion per se. Surprisingly, unligated integrin or β integrin tails recruit caspase-8 to the membrane, where it becomes activated in a death receptor–independent manner. Integrin ligation disrupts this integrin–caspase containing complex and increases survival, revealing an unexpected role for integrins in the regulation of apoptosis and tissue remodeling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Pitstop 2 Is a Potent Inhibitor of Clathrin-Independent Endocytosis

              Clathrin independent endocytosis (CIE) is a form of endocytosis present in all cells that mediates the entry of nutrients, macromolecules and membrane proteins into cells. When compared to clathrin-dependent endocytosis (CDE), however, much less is known about the machinery involved in forming CIE endosomes. One way to distinguish CIE from CDE has been to deplete cells of coat proteins involved in CDE such as clathrin or the dynamin GTPase, leading to a block of CDE but not CIE. A drawback of such genetic manipulations is that depletion of proteins important for mediating CDE over a period of days can have complex indirect effects on cellular function. The identification of chemical compounds that specifically and rapidly block CDE or CIE would facilitate the determination of whether a process involved CDE or CIE. To date, all of those compounds have targeted CDE. Dynasore and the dynoles specifically target and block dynamin activity thus inhibiting CDE but not most forms of CIE. Recently, a new compound called pitstop 2 was identified as an inhibitor of the interaction of amphiphysin with the amino terminal domain of clathrin, and shown to inhibit CDE in cells. Here we show that pitstop 2 is also a potent inhibitor of CIE. The effects of pitstop 2 are not restricted to inhibition of clathrin since knockdown of clathrin fails to rescue the inhibition of endocytosis of CIE proteins by the drug. Thus pitstop 2 has additional cellular targets besides the amino terminal domain of clathrin and thus cannot be used to distinguish CIE from CDE.
                Bookmark

                Author and article information

                Journal
                0361055
                7770
                Toxicology
                Toxicology
                Toxicology
                0300-483X
                1879-3185
                1 December 2015
                09 October 2015
                2 December 2015
                02 January 2016
                : 338
                : 17-29
                Affiliations
                [a ]Institute of Pathophysiology and Immunology, Centre of Molecular Medicine, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
                [b ]Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz and Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
                [c ]Centre for Medical Research, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
                Author notes
                Article
                EMS66214
                10.1016/j.tox.2015.09.008
                4671317
                26449523
                90e8e29c-4a00-4b39-9215-05c8538f3171

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                Toxicology
                prazosin,endocytosis,transport-p,lysosomes,apoptosis
                Toxicology
                prazosin, endocytosis, transport-p, lysosomes, apoptosis

                Comments

                Comment on this article