25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Urinary neutrophil gelatinase-associated lipocalin identifies critically ill young children with acute kidney injury following intensive care admission: a prospective cohort study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Children admitted to a pediatric intensive care unit (ICU) are at high risk of developing acute kidney injury (AKI). Although serum creatinine (SCr) levels are used in clinical practice, they are insensitive for early diagnosis of AKI. Urinary neutrophil gelatinase-associated lipocalin (uNGAL) and kidney injury molecule-1 (KIM-1) are novel AKI biomarkers whose performance in pediatric ICU patients is largely unknown. In this study, we aimed to characterize uNGAL and KIM-1 patterns in children following ICU admission and to assess their properties in relation to identifying children at risk for AKI development.

          Methods

          From June 2010 until January 2014, we conducted a prospective observational cohort study of term-born children ages 1 day to 1 year on mechanical ventilation. Blood and urine samples were obtained every 6 to 12 hours up to 72 hours post-admission. Blood samples were assayed for SCr, and urine samples were assayed for uNGAL and KIM-1. The RIFLE (risk, injury, failure, loss, end-stage renal disease) classification as 150%, 200% or 300% of median SCr reference values was used to define AKI.

          Results

          A total of 100 children were included (80 survived). Their median age at admission was 27.7 days (interquartile range (IQR), 1.5 to 85.5). The median duration of mechanical ventilation was 5.8 days (IQR, 3.1 to 11.4). Thirty-five patients had evidence of AKI within the first 48 hours post-admission, of whom 24 (69%) already had AKI when they entered the ICU. uNGAL and KIM-1 concentrations in AKI peaked between 6 to 12 hours and between 12 to 24 hours post-admission, respectively. The maximal area under the receiver operating characteristic curve (AUC) for uNGAL was 0.815 (95% confidence interval (CI), 0.685 to 0.945, P <0.001) at 0 to 6 hours post-admission. The discriminative ability of KIM-1 was moderate, with a largest AUC of 0.737 (95% CI, 0.628 to 0.847; P <0.001) at 12 to 24 hours post-admission. At the optimal cutoff point (126 ng/ml), uNGAL concentration predicted AKI development correctly in 16 (84%) of 19 children, up to 24 hours before a rise in SCr became apparent.

          Conclusions

          Levels of uNGAL and KIM-1 increase in patients with AKI following ICU admission and peak at 6 to 12 hours and 12 to 24 hours post-admission, respectively. uNGAL seems to be a reliable marker for identifying children who will develop AKI 24 hours later.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury.

          We report the identification of rat and human cDNAs for a type 1 membrane protein that contains a novel six-cysteine immunoglobulin-like domain and a mucin domain; it is named kidney injury molecule-1 (KIM-1). Structurally, KIM-1 is a member of the immunoglobulin gene superfamily most reminiscent of mucosal addressin cell adhesion molecule 1 (MAdCAM-1). Human KIM-1 exhibits homology to a monkey gene, hepatitis A virus cell receptor 1 (HAVcr-1), which was identified recently as a receptor for the hepatitis A virus. KIM-1 mRNA and protein are expressed at a low level in normal kidney but are increased dramatically in postischemic kidney. In situ hybridization and immunohistochemistry revealed that KIM-1 is expressed in proliferating bromodeoxyuridine-positive and dedifferentiated vimentin-positive epithelial cells in regenerating proximal tubules. Structure and expression data suggest that KIM-1 is an epithelial cell adhesion molecule up-regulated in the cells, which are dedifferentiated and undergoing replication. KIM-1 may play an important role in the restoration of the morphological integrity and function to postischemic kidney.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase.

            A 25-kDa protein was found to be associated with purified human neutrophil gelatinase. Polyclonal antibodies raised against gelatinase not only recognized gelatinase but also this 25-kDa protein. Specific antibodies against the 25-kDa protein were obtained by affinity purification of the gelatinase antibodies. Immunoblotting and immunoprecipitation studies demonstrated the 135-kDa form of gelatinase to be a complex of 92-kDa gelatinase and the 25-kDa protein, and the 220-kDa form was demonstrated to be a homodimer of the 92-kDa protein, thus explaining the 220-, 135-, and 92-kDa forms characteristic of neutrophil gelatinase. The 25-kDa protein was purified to apparent homogeneity from exocytosed material from phorbol myristate acetate-stimulated neutrophils. The primary structure of the 25-kDa protein was determined as a 178-residue protein. It was susceptible to treatment with N-glycanase, and one N-glycosylation site was identified. The sequence did not match any known human protein, but showed a high degree of similarity with the deduced sequences of rat alpha 2-microglobulin-related protein and the mouse protein 24p3. It is thus a new member of the lipocalin family. The function of the 25-kDa protein, named neutrophil gelatinase-associated lipocalin (NGAL), remains to be determined.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dual action of neutrophil gelatinase-associated lipocalin.

              Neutrophil gelatinase-associated lipocalin (NGAL) is expressed and secreted by immune cells, hepatocytes, and renal tubular cells in various pathologic states. NGAL exerts bacteriostatic effects, which are explained by its ability to capture and deplete siderophores, small iron-binding molecules that are synthesized by certain bacteria as a means of iron acquisition. Consistently, NGAL deficiency in genetically modified mice leads to an increased growth of bacteria. However, growing evidence suggests effects of the protein beyond fighting microorganisms. NGAL acts as a growth and differentiation factor in multiple cell types, including developing and mature renal epithelia, and some of this activity is enhanced in the presence of siderophore:iron complexes. This has led to the hypothesis that eukaryotes might synthesize siderophore-like molecules that bind NGAL. Accordingly, NGAL-mediated iron shuttling between the extracellular and intracellular spaces may explain some of the biologic activities of the protein. Interest in NGAL has been sparked by the observation that NGAL is massively upregulated after renal tubular injury and may participate in limiting kidney damage. This review summarizes the current knowledge about the dual effects of NGAL as a siderophore:iron-binding protein and as a growth factor and examines the role of these effects in renal injury.
                Bookmark

                Author and article information

                Contributors
                a.zwiers@erasmusmc.nl
                s.dewildt@erasmusmc.nl
                j.vanrosmalen@erasmusmc.nl
                y.derijke@erasmusmc.nl
                e.a.b.buijs@erasmusmc.nl
                d.tibboel@erasmusmc.nl
                k.cransberg@erasmusmc.nl
                Journal
                Crit Care
                Critical Care
                BioMed Central (London )
                1364-8535
                1466-609X
                21 April 2015
                21 April 2015
                2015
                : 19
                : 1
                : 181
                Affiliations
                [ ]Intensive Care and Department of Pediatric Surgery, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
                [ ]Department of Pediatric Nephrology, Erasmus Medical Center–Sophia Children’s Hospital, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
                [ ]Department of Biostatistics, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
                [ ]Department of Clinical Chemistry, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
                [ ]Department of Internal Medicine, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
                Article
                910
                10.1186/s13054-015-0910-0
                4422047
                25895828
                90f2c54a-a57d-4aca-8ab4-986b8a2a0bd9
                © Zwiers et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 December 2014
                : 2 April 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article